• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Övergå till högre stålhållfasthet / Switch to higher steel strength

Shahin, Firas, Karlsson, Rickard January 2017 (has links)
Detta projekt handlar om en övergång till högre stålhållfasthet. Övergången sker från stålhållfastheten S355 till S690 i HEA-profiler för pelare samt vindbockar. Valet att genomföra detta projekt kommer ifrån att det skulle vara intressant att se om det finns några vinster med att övergå till högre stålhållfasthet. Under projektets gång kunde det konstateras att mindre stålprofiler kunde väljas vid val av S690 istället för den traditionella S355. För just denna specifika stålhall som undersöktes minskades pelarstorleken med tre pelarprofiler. Medan för vindbockarna kunde endast en pelarprofil minskas. Vid användning av stålhållfastheten S690 uppnås tvärsnittklass 4 för ett fåtal HEA-profiler. Detta medför till mer omfattande dimensioneringsutförande jämfört med stålhållfastheten S355 som endast når tvärsnittsklass 3 som högst. Det föreligger för tillfället ett ekonomiskt incitament för att välja högre stålhållfasthet enligt de approximerade kostnadsanalyser som verkställdes under projektets gång. Med den högre stålhållfastheten blir stålmängden lägre för stålhallen. Detta medför mindre transporter till byggarbetsplatsen, vilket är gynnsamt både ur ett miljöperspektiv och ekonomiskt perspektiv. / This project is about a transition to higher steel strength. The transition is from steel strength S355 to S690 in HEA- profiles for column and wind trestles. The choice to do this project comes from the fact that it would be interesting to see if there are any profits in switching to higher steel strength. During the project process it was found that smaller steel profiles could be chosen when S690 was selected instead of the traditional S355. For this particular steel hall the column size was reduced by three column profiles and for the wind trestles only one profile could be reduced. When the steel strength S690 is used, the cross class 4 is obtained for a few HEA- profiles. This leads to more extensive dimensioning performance compared to the steel strength S355 which reaches only the cross class 3 as the highest. At present there is an financial incentive to choose higher steel strength according to the approximate cost analyzes carried out during the project process. With the higher steel strength, the steel amount becomes lower for the steel hall. This leads to less transport to the construction site. Which is beneficial both for an environmental perspective and economic perspective.
2

Optimalt antal stagade spann som krävs för att stomstabilisera en stålkonstruktion : Jämförelse av olika modeller för att hitta den optimala lösningen

Al matar, Leen, Taleb, Mohamad, Abdalnour, Geolle January 2023 (has links)
Purpose: The horizontal stabilization of a building is of great importance in the design of its structural system. Insufficient counteraction of horizontal loads can lead to problems where columns and beams deflect more than the allowable margins. One common horizontal load arises from wind hitting an exterior wall. In this study, four bracing types were analyzed using software to evaluate and compare them, taking various factors into account. The building upon which the study is based is an industrial four-story structure located in Västerås. The building is designed with hinged column bases, which require a stabilization system to maintain its stability. This study aimed to determine the optimal solution for the stabilization system by comparing multiple proposals (X, V, inverted V, and diagonal) considering all factors that significantly influence stabilization. The different proposals were compared in terms of material usage, horizontal displacement, and the number of spans required for steel bracing. Method: Hand calculations were used in this report to design various structural components such as columns, beams, and bracing, which were compared with FEM (Finite Element Method) designs. Additionally, different perspectives were considered within the relevant subject framework, including steel properties, general loads, characteristics, and descriptions of the examined models. Results: After conducting the calculations, it was found that the optimal number of spans required for bracing the industrial steel structure was 32 diagonal braces, placed in the outermost bays on all sides of the building at each floor. This proposal resulted in reduced material usage with a secure horizontal displacement, ensuring stability and durability of the building. Conclusions: In conclusion, this report provides a deep understanding of the importance of stability in buildings, especially when it comes to the safety of occupants and the structural integrity of the building. Proposal 1 has likely met the requirements based on all the calculations and analyzed models that have been conducted, and therefore, diagonal bracing has been chosen as the optimized solution.

Page generated in 0.0604 seconds