• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 17
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

AGE-RELATED NEURO-MECHANICAL CHANGE DURING STAIR LOCOMOTION

Johannsson, Johanna 25 October 2018 (has links)
Stair locomotion is one of the most difficult and challenging type of locomotion for older adults, with a high risk of fall and injuries. A major reason is that the neuromuscular system undergoes various changes through the aging process. The aim of this doctoral thesis is to study the age-related neuro-mechanical adjustments associated with stair locomotion and more specifically to investigate the interaction between neural and muscular changes in the plantarflexor muscles. To that aim, three main projects have been performed. The first two projects investigated the influence of age on spinal and supraspinal excitability when individuals stood at the bottom and the top of a 3-steps staircase and spinal excitability during stair locomotion. The third one focused on the age-related influence on the muscle-tendon behavior during stair locomotion. The result of the first project indicate a lower dependence on spinal pathway to control soleus motoneurons with a similar change observed in both age groups suggesting that healthy older adults preserved their ability to adjust postural control to environmental demands. The second project is the first to report the modulation of H-reflex amplitude in the plantarflexor muscles during stair ascent and descent in healthy young and older adults. This modulation likely reflects an increased role of descending inputs in controlling plantarflexor muscle activation during the stair gait cycle. However, similarly to the first project the modulation of the net excitatory inputs from group I afferents during the stair gait cycle does not seem to be influenced by healthy aging. The third project suggest that length changes of the Achilles tendon and lateral gastrocnemius (LG) fascicles favour the storage and recovery the tendon elastic strain energy over the muscle work, improving thereby the mechanical efficiency of stair ascent in young adults. In older adults, it seems that a different behavior is used to maintain a mechanical efficiency during stair ascent. In contrast, during stair descent, no difference was observed between age groups regarding the LG muscle-complex behavior despite some kinematics changes. In conclusion, this doctoral thesis indicates that despite some age-related structural and functional changes of the neuromuscular system, similar neural modulations occur during stair locomotion in young and healthy older adults. During stair ascent, a similar global pattern of change in length for the fascicle’s length and the modulation of the H reflex can be observed. However, during stair descent, H reflex modulation cannot be simply explained by the pattern of muscle length change. / Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
32

Development of a Stair-Climbing Robot and a Hybrid Stabilization System for Self-Balancing Robots

Robillard, Dominic January 2014 (has links)
Self-balancing robots are unique mobile platforms that stay upright on two wheels using a closed-loop control system. They can turn on the spot using differential steering and have compact form factors that limit their required floor space. However they have major limitations keeping them from being used in real world applications: they cannot stand-up on their own, climb stairs, or overcome obstacles. They can fall easily if hit or going onto a slippery surface because they rely on friction for balancing. The first part of this research proposes a novel design to address the above mentioned issues related to stair-climbing, standing-up, and obstacles. A single revolute joint is added to the centre of a four-wheel drive robot onto which an arm is attached, allowing the robot to successfully climb stairs and stand-up on its own from a single motion. A model and simulation of the balancing and stair-climbing process are derived, and compared against experimental results with a custom robot prototype. The second part, a control system for an inverted pendulum equipped with a gyroscopic mechanism, was investigated for integration into self-balancing robots. It improves disturbance rejection during balance, and keeps equilibrium on slippery surfaces. The model of a gyroscope mounted onto an actuated gimbal was derived and simulated. To prove the concept worked, a custom-built platform showed it is possible for a balancing robot to stay upright with zero traction under the wheels.
33

The Effects from Stair Climbing on Postural Control During Sit-to-Stands

Crake, Dylan January 2017 (has links)
Rising up from a chair (sit-to-stand; STS) and stair climbing are both activities of daily living (ADLs) done throughout our lives. The ability to complete ADLs is crucial for independent living. The goal of this thesis was to research how two ADLs interact with each other and affect postural control. It was hypothesized that an increased number of flights of stairs climbed would lead to a decline in postural control during/after a STS in older more than younger adults. Fourteen older adults and fourteen young adults were tested by completing three STSs before and after climbing 1, 3 and 5 flights of stairs, chosen at random. Movements of the center of pressure (COP) for each STS were obtained from a force platform. Only an age effect was found for COP velocity (left-right and anterior-posterior directions) during the momentum transfer phase, during stabilization and after stabilization. Therefore, contrary to our hypothesis, stair climbing did not lead to significant changes in COP movements during and following a STS.
34

Stair gait in older adults worsens with smaller step treads and when transitioning between level and stair walking

Di Giulio, I., Reeves, Neil D., Roys, M., Buckley, John, Jones, D.A., Gavin, J.P., Baltzopoulos, V., Maganaris, C.N. 23 March 2022 (has links)
Yes / Older people have an increased risk of falling during locomotion, with falls on stairs being particularly common and dangerous. Step going (i.e., the horizontal distance between two consecutive step edges) defines the base of support available for foot placement on stairs, as with smaller going, the user's ability to balance on the steps may become problematic. Here we quantified how stair negotiation in older participants changes between four goings (175, 225, 275, and 325 mm) and compared stair negotiation with and without a walking approach. Twenty-one younger (29 ± 6 years) and 20 older (74 ± 4 years) participants negotiated a 7-step experimental stair. Motion capture and step-embedded force platform data were collected. Handrail use was also monitored. From the motion capture data, body velocity, trunk orientation, foot clearance and foot overhang were quantified. For all participants, as stair going decreased, gait velocity (ascent pA = 0.033, descent pD = 0.003) and horizontal step clearance decreased (pA = 0.001), while trunk rotation (pD = 0.002) and foot overhang increased (pA,D < 0.001). Compared to the younger group, older participants used the handrail more, were slower across all conditions (pA < 0.001, pD = 0.001) and their foot clearance tended to be smaller. With a walking approach, the older group (Group x Start interaction) showed a larger trunk rotation (pA = 0.011, pD = 0.015), and smaller lead foot horizontal (pA = 0.046) and vertical clearances (pD = 0.039) compared to the younger group. A regression analysis to determine the predictors of foot clearance and amount of overhang showed that physical activity was a common predictor for both age groups. In addition, for the older group, medications and fear of falling were found to predict stair performance for most goings, while sway during single-legged standing was the most common predictor for the younger group. Older participants adapted to smaller goings by using the handrails and reducing gait velocity. The predictors of performance suggest that motor and fall risk assessment is complex and multifactorial. The results shown here are consistent with the recommendation that larger going and pausing before negotiating stairs may improve stair safety, especially for older users. / This study was supported by the New Dynamics of Aging (RES-356-25-0037).
35

The effect of brief intermittent stair climbing exercise on glycemic control in people with type 2 diabetes

Godkin, Florence Elizbeth 11 1900 (has links)
Physical activity is important for the management and treatment of type 2 diabetes (T2D). Interval exercise training has been shown to improve glycemic control in people with T2D; however, studies have generally utilized high volume protocols and/or specialized equipment that limit translation to a “real world” setting. The present proof-of-concept study examined the efficacy of brief, intermittent stair climbing exercise to improve indices of glycemic control in adults with T2D, using continuous glucose monitoring (CGM) under controlled dietary conditions. Each session involved 3 x 60-s bouts of vigorously ascending and slowly descending a single flight of stairs. This was set within a 10-min period, which otherwise involved walking for a warm-up, cool-down and recovery in between bouts. Data are reported for n=5 participants (52 ± 18 y, BMI: 31 ± 5 kg/m2, HbA1c: 6.6 ± 0.7 %; mean ± SD) who performed 18 training sessions over 6 weeks. Mean 24-h glucose and time spent in hyperglycemia (> 10 mmol/L) were unchanged after an acute session of stair climbing (p=0.38 and p=0.42, respectively) or after 6 weeks of training (p=0.15 and p=0.47, respectively). Measures of glycemic variability were improved in the 24-h period following a single session of stair climbing, based on reductions in the mean amplitude of glycemic excursions (MAGE) (4.4 ± 1.5 vs. 3.5 ± 1.0 mmol/L, p =0.02) and the standard deviation (SD) around the mean (1.7 ± 0.5 vs. 1.4 ± 0.5 mmol/L, p=0.02). There was a meal-specific improvement in postprandial hyperglycemia after training, with the incremental area under the curve (iAUC) of the lunchtime meal reduced by 36 ± 42 % (p=0.01). These preliminary results demonstrate the feasibility of stair climbing as a physical activity option for people with T2D, although the acute and chronic effects of this training on indices of glycemic control remain equivocal. / Thesis / Master of Science in Kinesiology / Physical activity is important for the management of type 2 diabetes (T2D). Interval training, which involves alternating periods of relatively intense exercise and recovery, can improve blood sugar control in adults with T2D. This has largely been shown in laboratory settings using specialized equipment and protocols that may not be practical or time-efficient. This small, proof-of-concept study examined whether brief, intermittent stair climbing exercise could improve blood sugar control in people with T2D. Average blood sugar measured over 24 hours was unchanged after a single bout of stair climbing and after 18 sessions of training performed over 6 weeks. However, stair-climbing exercise reduced blood sugar fluctuations in response to specific meals. These preliminary findings suggest that interval stair climbing is a feasible exercise option for adults with T2D, but the precise effects on blood sugar control remain to be clarified.
36

The mechanics of landing when stepping down in unilateral lower-limb amputees

Twigg, Peter C., Jones, S.F., Scally, Andy J., Buckley, John January 2006 (has links)
The ability to successfully negotiate stairs and steps is an important factor for functional independence. While work has been undertaken to understand the biomechanics of gait in lower-limb amputees, little is known about how amputees negotiate stairs and steps. This study aimed to determine the mechanics of landing in unilateral lower-limb amputees when stepping down to a new level. A secondary aim was to assess the effects of using a shank-mounted shock-absorbing device (Tele-Torsion Pylon) on the mechanics of landing. Methods Ten unilateral amputees (five transfemoral and five transtibial) and eight able-bodied controls performed single steps down to a new level (73 and 219 mm). Trials were repeated in amputees with the Tele-Torsion Pylon active and inactive. The mechanics of landing were evaluated by analysing peak limb longitudinal force, maximal limb shortening, lower extremity stiffness, and knee joint angular displacement during the initial contact period, and limb and ankle angle at the instant of ground-contact. Data were collected using a Vicon 3D motion analysis system and two force platforms. Findings Amputees landed on a straightened and near vertical limb. This limb position was maintained in transfemoral amputees, whereas in transtibial amputees knee flexion occurred. As a result lower extremity stiffness was significantly greater in transfemoral amputees compared to transtibial amputees and able-bodied controls (P < 0.001). The Tele-Torsion Pylon had little effect on the mechanics of landing in transtibial amputees, but brought about a reduction in lower extremity stiffness in transfemoral amputees (P < 0.05). Interpretation Amputees used a stepping strategy that ensured the direction of the ground reaction force vector was kept anterior of the knee joint centre. Using a Tele-Torsion Pylon may improve the mechanics of landing during downward stepping in transfemoral amputees.
37

Interplay: Studies in Rowhouse Design

Tedesco, Patricia 14 August 2003 (has links)
This thesis began as an exploration of the idea of home, a study that revealed the importance of place. Seeking to understand what makes a successful place, I studied neighborhoods with which I was familiar, identifying characteristics of both the vital and the lifeless. As a foundation for architectural exploration, this study helped me to recognize the dynamic qualities of denser, more urban neighborhoods, and to establish rowhousing as the vehicle through which to undertake my exploration of urban living. While providing the genesis for the project and further defining certain elements as worthy of further study, this initial exploration was nonetheless lacking. I had to do more than just speak of the conditions I hoped to achieve and of the characteristics of the elements with which to make the conditions manifest. I had to make the conditions, make the elements. It was essential for me to establish a clear order, so that these conditions could be brought together to form a cohesive whole. I was able to arrive at a fully conceived expression of the project by structuring the conditions that I identified through the application of three dimensional grids. The interrelationships among the grids helped structure the relationships among various conditions, ensuring that they enhanced one another, and were, in fact, stronger together than separately. Working with the grids taught me that in order for them to be effective regulators the grids had to be intelligible while still being flexible; that they should help define but never dictate. It exposed the tension between the regulating devices we, as architects, utilize as tools for design and the three-dimensional material with which the designs are constructed, as well as the obligation of reconciling the two. Not only must the device accommodate the material and the material reveal the device, but indeed all facets of the design must be considered in relation to one another and to the whole. When philosopy, device, and material work in service of one another the possibility for architectural expression rather than simple building is created. One does not revere great architects solely for their philosophies of design, the functionality of the spaces they create, the materials with which they construct them, or the regulating devices they employ, but rather for the complexity with which these elements are brought together to form a whole so well designed that it seems that it could have been done no other way. / Master of Architecture
38

Bedeutung nicht-kodierender RNAs im Immunsystem

Hösler, Nadine 26 August 2015 (has links) (PDF)
Immer mehr Berichte deuten darauf hin, dass nicht-kodierende RNAs an der Regulation des Immunsystems beteiligt sind. In dieser Arbeit wurden nicht-kodierende RNAs identifiziert, die durch zwei unterschiedliche immunologische Prozesse in zwei verschiedenen Zelltypen reguliert wurden. Zum einen wurde das Transkriptom von Multiplen Myelom-Zellen in Abhängigkeit von der Interleukin 6-Stimulation untersucht. Dabei wurden einige sehr lange, IL 6-regulierte macroRNAs identifiziert, die STAIRs (STAT3-induced RNAs). Bei den STAIRs handelt es sich wahrscheinlich um funktionelle, kontinuierliche, nicht-kodierende macroRNAs, die im Zellkern angereichert sind. Einige STAIRs dienen eventuell zusätzlich oder ausschließlich als Primärtranskript für gespleißte, lange ncRNAs (lncRNAs), die weitere Funktionen in der Zelle ausüben können. Die STAIRs weisen eine große Bandbreite an Gewebsspezifität auf und bei den Untersuchungen in dieser Arbeit zeigten sich Hinweise, dass sie sich für verschiedene Krebserkrankungen als Biomarker eignen könnten. Die zweite Transkriptomanalyse wurde bei der Aktivierung naiver T Zellen durchgeführt. Dabei offenbarte sich, dass die Zellen bei diesem Prozess einen dramatischen Wechsel ihres Transkriptionsprogrammes vollziehen und eine Vielzahl nicht Protein-kodierender Gene reguliert werden. Es wurde die Regulation von ncRNAs, die bisher noch nicht im Zusammenhang mit T Zellen beschrieben wurden, beobachtet und erneut unbekannte, differentiell exprimierte Bereiche identifiziert. Im Anschluss wurde STAIR18, eine nicht-kodierende RNA, die durch die beiden untersuchten Signalwege reguliert wird, eingehender untersucht. Es zeigte sich, dass STAIR18 im menschlichen Genom dupliziert ist und beide Loci die gespleißte, lange ncRNA152 in diversen Varianten transkribieren. ncRNA152 ist hauptsächlich im Zytoplasma lokalisiert und befindet sich dort anscheinend in perinukleären Aggregaten. Die verschiedenen ncRNA152-Isoformen scheinen unter-schiedliche Funktionen auszuführen. Einerseits ist eine Wirkung als competing endogenous RNA wahrscheinlich. Eine weitere Aufgabe der ncRNA152 scheint darin zu bestehen, das STAT3-Primärtranskript zu stabilisieren oder dessen Prozessierung zu fördern.
39

Bedeutung nicht-kodierender RNAs im Immunsystem

Hösler, Nadine 19 June 2015 (has links)
Immer mehr Berichte deuten darauf hin, dass nicht-kodierende RNAs an der Regulation des Immunsystems beteiligt sind. In dieser Arbeit wurden nicht-kodierende RNAs identifiziert, die durch zwei unterschiedliche immunologische Prozesse in zwei verschiedenen Zelltypen reguliert wurden. Zum einen wurde das Transkriptom von Multiplen Myelom-Zellen in Abhängigkeit von der Interleukin 6-Stimulation untersucht. Dabei wurden einige sehr lange, IL 6-regulierte macroRNAs identifiziert, die STAIRs (STAT3-induced RNAs). Bei den STAIRs handelt es sich wahrscheinlich um funktionelle, kontinuierliche, nicht-kodierende macroRNAs, die im Zellkern angereichert sind. Einige STAIRs dienen eventuell zusätzlich oder ausschließlich als Primärtranskript für gespleißte, lange ncRNAs (lncRNAs), die weitere Funktionen in der Zelle ausüben können. Die STAIRs weisen eine große Bandbreite an Gewebsspezifität auf und bei den Untersuchungen in dieser Arbeit zeigten sich Hinweise, dass sie sich für verschiedene Krebserkrankungen als Biomarker eignen könnten. Die zweite Transkriptomanalyse wurde bei der Aktivierung naiver T Zellen durchgeführt. Dabei offenbarte sich, dass die Zellen bei diesem Prozess einen dramatischen Wechsel ihres Transkriptionsprogrammes vollziehen und eine Vielzahl nicht Protein-kodierender Gene reguliert werden. Es wurde die Regulation von ncRNAs, die bisher noch nicht im Zusammenhang mit T Zellen beschrieben wurden, beobachtet und erneut unbekannte, differentiell exprimierte Bereiche identifiziert. Im Anschluss wurde STAIR18, eine nicht-kodierende RNA, die durch die beiden untersuchten Signalwege reguliert wird, eingehender untersucht. Es zeigte sich, dass STAIR18 im menschlichen Genom dupliziert ist und beide Loci die gespleißte, lange ncRNA152 in diversen Varianten transkribieren. ncRNA152 ist hauptsächlich im Zytoplasma lokalisiert und befindet sich dort anscheinend in perinukleären Aggregaten. Die verschiedenen ncRNA152-Isoformen scheinen unter-schiedliche Funktionen auszuführen. Einerseits ist eine Wirkung als competing endogenous RNA wahrscheinlich. Eine weitere Aufgabe der ncRNA152 scheint darin zu bestehen, das STAT3-Primärtranskript zu stabilisieren oder dessen Prozessierung zu fördern.:1 Einleitung 1 1.1 Nicht-kodierende RNAs 1 1.1.1 Funktionen langer nicht-kodierender RNAs 2 1.1.2 Lange nicht-kodierende RNAs in Krebserkrankungen 4 1.2 Die Signaltransduktion von IL-6 und STAT3 5 1.2.1 Die IL-6/STAT3-Signalkaskade 5 1.2.2 Der Transkriptionsfaktor STAT3 7 1.2.3 Interleukin 6 und STAT3 in Krebserkrankungen 9 1.2.4 STAT3-regulierete nicht-kodierende RNAs 12 1.3 T-Zellen 13 1.3.1 T Zellaktivierung 14 1.3.2 Lange nicht-kodierende RNAs in T Zellen 16 1.4 Zielstellung 18 2 Material und Methoden 20 2.1 Bioinformatische Methoden 20 2.1.1 Evaluierung von Tiling Array-Daten 20 2.1.2 Evaluierung von Hochdurchsatz-Sequenzierungen 21 2.1.3 Auswertung von Mikroarray-Daten 21 2.1.4 DNA-Sequenzanalysen 22 2.1.5 Design von Oligonukleotiden 23 2.1.6 Statistische Auswertung 24 2.2 Molekularbiologische Methoden 25 2.2.1 Zellfraktionierung 25 2.2.2 Isolation von RNA 25 2.2.3 Reverse Transkription 26 2.2.4 Quantitative real-time PCR 27 2.2.5 Klonierung 29 2.3 Zellbiologische Methoden 36 2.3.1 Präparation primärer T-Helferzellen 36 2.3.2 Zellkultur und Stimulation eukaryontischer Zellen 38 2.3.3 Durchflusszytometrie 40 2.3.4 Transiente Transfektion eukaryontischer Zellen 42 2.3.5 Reportergenanalysen 44 2.3.6 Fluoreszenz in situ Hybridisierung 45 2.3.7 Gewebe- und Patientenproben 48 3 Ergebnisse 50 3.1 Identifizierung und Charakterisierung neuer STAT3-regulierter ncRNA-Gene 50 3.1.1 Genomweite Untersuchung STAT3-regulierter ncRNAs 50 3.1.2 Validierung der IL-6-Tiling Array-Daten 65 3.1.3 Intrazelluläre Lokalisation der STAIRs 67 3.1.4 Expressionsprofile der STAIRs 68 3.2 Identifizierung regulierter ncRNA-Gene während der T Zellaktivierung 72 3.2.1 Etablierung der in vitro Aktivierung primärer T Zellen 72 3.2.2 Genomweite Untersuchung regulierter RNAs während der T-Zellaktivierung 74 3.2.3 Validierung der T-Zellaktivierungs-Genomdaten 83 3.3 Untersuchung der nicht-kodierenden RNA STAIR18 / ncRNA152 83 3.3.1 STAIR18 ist im humanen Genom dupliziert 84 3.3.2 Von beiden STAIR18-Loci werden gespleißte Transkripte generiert 86 3.3.3 Regulation der ncRNA152 90 3.3.4 Untersuchung des STAIR18/ncRNA152-Promotors 96 3.3.5 Intrazelluläre Lokalisation von STAIR18 und ncRNA152 101 3.3.6 Überexpression der ncRNA152 in XG-1-Zellen 106 3.3.7 Knockdown der ncRNA152 in XG-1-Zellen 107 3.3.8 Identifizierung putativer Zielgene der ncRNA152 109 4 Diskussion 111 4.1 IL 6/STAT3 regulierte macroRNAs 111 4.1.1 Charakterisierung der STAIRs 114 4.1.2 STAIRS als potentielle Biomarker 121 4.2 Regulation von lncRNAs während der T Zellaktivierung 122 4.3 Untersuchung von STAIR18/ncRNA152 128 4.3.1 Regulation von STAIR18 und der ncRNA152 129 4.3.2 Lokalisation von STAIR18 und der ncRNA152 130 4.3.3 Manipulation der ncRNA152-Expression 131 4.3.4 Bedeutung der ncRNA152 133 5 Zusammenfassung 135 6 Summary 138 7 Literaturverzeichnis 141 8 Anhang 153 Danksagung 168 Publikationen 16969 Selbstständigkeitserklärung 170
40

Caracterização de parâmetros biomecânicos durante a subida de degraus / Characterization of biomechanical parameters during stair ascent

Kuriki, Heloyse Uliam 18 April 2013 (has links)
Subir e descer escadas são atividades funcionais habituais e muito relatadas como queixa principal por pacientes com alterações ortopédicas como a síndrome dolorosa femoropatelar - por ser um movimento que acarreta descarga de peso unilateral e assim causa um aumento da dor - e por pacientes com afecções neurológicas - devido à dificuldade na execução deste gesto. Além disso, a subida e descida de escadas é habitualmente utilizada como técnica terapêutica na reabilitação destes pacientes; porém poucos estudos foram realizados com o intuito de caracterizar este gesto e, estes estudos, concluem que a alta variabilidade dos dados não permite confirmar os resultados. Estudos com pacientes com dor femoropatelar usualmente avaliam estes sujeitos com eletromiografia de superfície e sugerem que exista um déficit de equilíbrio na musculatura estabilizadora da patela e que esta é a causa da dor nestes pacientes; porém, também há uma grande variabilidade nos resultados encontrados, não sendo possível confirmar esta hipótese. Neste contexto, este estudo teve o objetivo de verificar quais parâmetros do sinal eletromiográfico apresentaram boa reprodutibilidade e menor variabilidade e são, portanto, mais adequados para caracterizar o gesto proposto, podendo ser utilizado para comparar grupos de indivíduos com e sem dor femoropatelar. Para isto, foi utilizada a eletromiografia para avaliar a atividade dos músculos vasto lateral e vasto medial do quadríceps durante a subida de escada em 39 indivíduos clinicamente saudáveis e 23 indivíduos com dor femoropatelar. Os resultados mostraram que os parâmetros que apresentaram boa reprodutibilidade entre os dois dias de avaliação foram: início de ativação, duração da contração muscular, tempo mediano da contração, intensidade do sinal, co-ativação muscular e frequência mediana. Dentre estes parâmetros, aqueles que permitiram diferenciar os grupos de estudo foram o tempo mediano da ativação, que ocorreu mais tardiamente nos indivíduos com dor e a co-ativação muscular, que demonstrou menor porcentagem de ativação conjunta nos indivíduos com dor. Estes dados indicam uma alteração no controle neuromotor durante a subida de escada, sugerindo que a abordagem clínica deva passar por treinos de equilíbrio, coordenação e propriocepção, para melhorar a estabilidade articular durante a realização de atividades dinâmicas. / Go up and down stairs are functional activities very habitual and reported as complaint for patients with orthopedic alterations as patellofemoral pain syndrome because it is a movement that carries unilateral weight bearing and thus cause an increase in pain and for patients with neurological disorders due to the difficulty in carrying out this gesture. Moreover, the ascent and descent of stairs is usually used as a therapeutic technique in the rehabilitation of these patients, but few studies have been conducted in order to characterize this gesture and, these studies conclude that the high variability of the data does not confirm the results. Studies on patients with patellofemoral pain usually assess these subjects with surface electromyography and suggest that there is a balance deficit in the patella stabilizer muscles and that this is the cause of pain in these patients, but there is also a great variability in the results, that does not allow to confirm this hypothesis. In this context, this study aimed to determine which parameters of electromyographic signals showed good reproducibility and low variability and are, therefore, more appropriate to characterize the proposed gesture and can be used to compare groups of individuals with and without patellofemoral pain. For this, we used electromyography to evaluate the activity of the vastus lateralis and vastus medialis of the quadriceps during stair climbing in 39 clinically healthy individuals and 23 individuals with patellofemoral pain. The results showed that the parameters with good reproducibility between the two days of evaluation were: onset, duration of muscle contraction, median time of contraction, intensity of activation, muscular co-activation and median frequency. Among these parameters, those that could differentiate the groups were the median time of activation, which occurred later in subjects with pain and muscle co-activation, which showed a lower percentage of combined activation in individuals with joint pain. These data indicate a change in neuromotor control during stair climbing, suggesting that the clinical approach should undergo training of balance, coordination and proprioception, in order to improve joint stability while performing dynamic activities.

Page generated in 0.0396 seconds