• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions among Silvicultural Intensity, Genotype, and Environment and Their Effects on the Growth and Mortality of Loblolly Pine and Slash Pine Families

Zhai, Lu 16 December 2013 (has links)
Managed pine forests are central to the economic vitality of the southeastern US. Over the past fifty years, the productivity of managed pine forests of this region have increased significantly with the development of new silvicultural technologies and the use of improved tree genetic material. Of the pine species present in the southeastern US, loblolly pine has arguably been the most intensively studied and widely planted by forest managers. Efficient operational deployment of improved genetic materials requires an understanding of how possible site conditions and silvicultural treatment may interact to affect maximum yield. There are a wide range of site conditions in the south as the result of regional climate gradients, soil type and soil drainage patterns. On the western edge of loblolly pine’s natural extent, Texas has a drier climate than areas to the east, and in Louisiana, there are also poorly drained Ultisols that are found in areas with little relief and are prone to flooding. However, on the basis of 10-year forest inventory data of pure-family plots from three different sites and under two levels of cultural regime intensity, my study found that superior genotype, Lob 5 from South Carolina, still showed best performance in the Western Gulf area, and high intensive treatment could improve stand growth and resistance to wind damage significantly. Further, my study compared the stand production and dynamics between pure- and mixed-family plots. I found that Lob 5 and Lob 4 showed the growth traits of competitive ideotype, and low intensive treatment increased the deployment effect significantly for competitive ideotype. Finally, my study examined leaf area index (LAI) and foliar nitrogen concentration (foliar N). The result showed that fast growing genotype had lower LAI and foliar N than slow growing one. It indicated that fast growing genotype had high resource use efficiency and nutrient requirement. This research provided critical information to guide industrial forest management in the WG (Western Gulf) area. First, introduced superior genotype continued to show good performance in this area. Second, combination of good genotype and high intensive treatment would increase plantation production significantly. Third, identification of ideotype would increase the accuracy of growth potential estimation in progeny test.
2

Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany.

Knust, Christine, Feger, Karl-Heinz 27 March 2017 (has links) (PDF)
A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium aged Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) stands differing in productivity, and related them to soil nutrient pools and fluxes at the study sites. We established allometric biomass functions for each aboveground tree compartment and analyzed their nutrient contents. We analyzed soil nutrient stocks, estimated weathering rates, and obtained deposition and seepage data from nearby Level II stations. WT (excl. needles) and WT treatments cause nutrient losses 1.5 to 3.6 times higher than SO, while the biomass gain is only 1.18 to 1.25 in case of WT (excl. needles) and 1.28 to 1.30 in case of WT in the pine and spruce stand, respectively. Within the investigated 25-year period, WT harvesting would cause exports of N, K+, Ca2+, and Mg2+ of 6.6, 8.8, 5.4, and 0.8 kg·ha−1 in the pine stand and 13.9, 7.0, 10.6, and 1.8 kg·ha−1 in the spruce stand annually. The relative impact of WT and WT (excl. needles) on the nutrient balance is similar in the pine and spruce stands, despite differences in stand productivities, and thus the absolute amount of nutrients removed. In addition to the impact of intensive harvesting, both sites are characterized by high seepage losses of base cations, further impairing the nutrient budget. While intensive biomass extraction causes detrimental effects on many key soil ecological properties, our calculations may serve to implement measures to improve the nutrient balance in forested ecosystems.
3

Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany.

Knust, Christine, Feger, Karl-Heinz 27 March 2017 (has links)
A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium aged Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) stands differing in productivity, and related them to soil nutrient pools and fluxes at the study sites. We established allometric biomass functions for each aboveground tree compartment and analyzed their nutrient contents. We analyzed soil nutrient stocks, estimated weathering rates, and obtained deposition and seepage data from nearby Level II stations. WT (excl. needles) and WT treatments cause nutrient losses 1.5 to 3.6 times higher than SO, while the biomass gain is only 1.18 to 1.25 in case of WT (excl. needles) and 1.28 to 1.30 in case of WT in the pine and spruce stand, respectively. Within the investigated 25-year period, WT harvesting would cause exports of N, K+, Ca2+, and Mg2+ of 6.6, 8.8, 5.4, and 0.8 kg·ha−1 in the pine stand and 13.9, 7.0, 10.6, and 1.8 kg·ha−1 in the spruce stand annually. The relative impact of WT and WT (excl. needles) on the nutrient balance is similar in the pine and spruce stands, despite differences in stand productivities, and thus the absolute amount of nutrients removed. In addition to the impact of intensive harvesting, both sites are characterized by high seepage losses of base cations, further impairing the nutrient budget. While intensive biomass extraction causes detrimental effects on many key soil ecological properties, our calculations may serve to implement measures to improve the nutrient balance in forested ecosystems.

Page generated in 0.0648 seconds