• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 15
  • 12
  • 10
  • 10
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 305
  • 305
  • 103
  • 89
  • 71
  • 60
  • 58
  • 53
  • 51
  • 48
  • 47
  • 36
  • 32
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Search, Characterization, And Properties Of Brown Dwarfs

Tata, Ramarao 01 January 2009 (has links)
A trend in polarization as predicted by theoretical models was validated, and atmospheric dust grain sizes and projected rotational velocities for these objects were estimated. Comprehensive studies of UDs are proving to be crucial not only in our understanding of UDs but also for star and planet formation as brown dwarfs represent their lower and upper mass boundaries, respectively. Brown dwarfs (BD) were mere theoretical astrophysical objects for more than three decades (Kumar (1962)) till their first observational detection in 1995 (Rebolo et al. (1995), Nakajima et al. (1995)). These objects are intermediate in mass between stars and planets. Since their observational discovery these objects have been studied thoroughly and holistically.Various methods for searching and characterizing these objects in different regions of the sky have been put forward and tested with great success. Theoretical models describing their physical, atmospheric and chemical processes and properties have been proposed and have been validated with a large number of observational results. The work presented in this dissertation is a compilation of synoptic studies of ultracool dwarfs(UDs)¹. [Footnote 1:]. [bullet] A search for wide binaries around solar type stars in upper scorpio OB association (Upper Sco) do indicate (the survey is not yet complete) a deficit of BD binaries at these large separations ([less than] 5AU). [bullet] Twenty six new UDs were discovered at low galactic latitudes in our survey from archival data and a novel technique using reduced proper motion. [bullet] Six field UDs were discovered by spectroscopic follow-up of the candidates selected from a deep survey. [bullet] Optical interferometry was used to independently determine the orbit of the companion of HD33636 which was initially determined using Hubble Space Telescope(HST)astrometry and radial velocity found. Some inconsistency in the HST determined orbit and mass. [bullet] Optical linear polarization in UDs was used to investigate the dust propertied in their atmospheres. Footnote 1: We use the term "ultracool dwarfs" as the mass of most of the objects mentioned is unknown, which is required to classify an object as a brown dwarf. We define objects later than M7 as ultra cool dwarfs.
212

Resolving the smallest scale of star formation at Cosmic Noon with JWST : Star-forming clumps in a galaxy lensed by Abell 2744

Pless, Annalena January 2023 (has links)
At higher redshift galaxies exhibit increasingly irregular and clumpy morphologies, withstar-forming clumps dominating the FUV output of their host galaxies thus being inti-mately related to star formation and the formation and evolution of galaxies. This workexamines star-forming clumps in a remarkable, young spiral galaxy at Cosmic Noon witha redshift ofz= 2.584, lensed by the galaxy cluster Abell 2744. To this aim, NIRCamobservations in 7 filter bands are utilized to determine photometry of clumps and performbroadband SED fitting to determine characteristic sizes, ages and masses and infer theirdynamical ages and mass surface densities. The clump within this galaxy spans a widerange of properties with sizes between 20 to 200 pc and masses between 105M⊙and109M⊙. While clumps are not resolved down to scales of individual star clusters, small,dense clumps may host star clusters. A number of clumps exhibits agestage>100 Myr,thus being able to survive feedback up to these timescales. This population of clumpsalso appears to be dynamically evolved and gravitationally bound as well as the denseststructures within the investigated sample, with roughly∼20% of clumps exhibiting masssurface densities comparable to bound stellar clusters in the local Universe.
213

Simulating Radiative Feedback and the Formation of Massive Stars

Klassen, Mikhail January 2016 (has links)
This thesis is a study of massive star formation: the environments in which they form and the effect that their radiation feedback has on their environments. We present high-performance supercomputer simulations of massive star formation inside molecular cloud clumps and cores. First, we present a novel radiative transfer code that hybridizes two previous approaches to radiative transfer (raytracing and flux-limited diffusion) and implements it in a Cartesian grid-based code with adaptive mesh refinement, representing the first of such implementations. This hybrid radiative transfer code allows for more accurate calculations of the radiation pressure and irradiated gas temperature that are the hallmark of massive star formation and which threaten to limit the mass which stars can ultimately obtain. Next, we apply this hybrid radiative transfer code in simulations of massive protostellar cores. We simulate their gravitational collapse and the formation of a massive protostar surrounded by a Keplerian accretion disk. These disks become gravitationally unstable, increasing the accretion rate onto the star, but do not fragment to form additional stars. We demonstrate that massive stars accrete material predominantly through their circumstellar disks, and via radiation pressure drive large outflow bubbles that appear stable to classic fluid instabilities. Finally, we present simulations of the larger context of star formation: turbulent, magnetised, filamentary cloud clumps. We study the magnetic field geometry and accretion flows. We find that in clouds where the turbulent and magnetic energies are approximately equal, the gravitational energy must dominate the kinetic energy for there to be a coherent magnetic field structure. Star cluster formation takes place inside the primary filament and the photoionisation feedback from a single massive star drives the creation of a bubble of hot, ionised gas that ultimately engulfs the star cluster and destroys the filament. / Thesis / Doctor of Philosophy (PhD)
214

From Galaxies to the Intergalactic Medium

Peeples, Molly S. 28 September 2010 (has links)
No description available.
215

The Chemical Impact of Physical Conditions in the Interstellar Medium

Rimmer, Paul Brandon 19 June 2012 (has links)
No description available.
216

SMA Observations of the Local Galaxy Merger Arp 299

Sliwa, Kazimierz 10 1900 (has links)
<p>Ultra/Luminous infrared galaxies (U/LIRGs) are some of the most amazing systems in the local universe exhibiting extreme star formation triggered by mergers. Since molecular gas is the fuel for star formation, studying the warm, dense gas associated with star formation is important in understanding the processes and timescales controlling star formation in mergers. We have used high resolution (∼2.3”) observations of the local LIRG Arp 299 to map out the physical properties of the molecular gas. The molecular lines 12CO J=3-2, 12CO J=2-1 and 13CO J=2-1 were observed with the Submillimeter Array and the short spacings of the 12CO J=3-2 and J=2-1 observations have been recovered using James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to measure the physical properties such as density and temperature of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, show two gas components: a warm moderately dense gas with T_kin ∼ 30-500 K (up to 1000K for NGC3690) and n(H2)~0.3-3×10^3 cm^−3 and a cold dense gas with T_kin~10-30 K and n(H2) > 3 × 10^3 cm^−3. The overlap region is shown to have a well-constrained solution with T_kin ∼ 10-30 K and n(H2)~3-30 × 10^3 cm^−3. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion time of each region is found to be about 2 orders of magnitude lower than that of normal spiral galaxies. This can be probably explained by a higher fraction of dense gas in Arp 299 than in normal disk galaxies.</p> / Master of Science (MSc)
217

Connecting the Dots: Comparing SPH Simulations and Synthetic Observations of Star-forming Clumps in Molecular Clouds

Ward, Rachel L. 10 1900 (has links)
<p>The gravitational collapse of a giant molecular cloud produces localized dense regions, called clumps, within which low-mass star formation is believed to occur. Recent studies have shown that limitations of current observing techniques make it difficult to correctly identify and measure properties of these clumps that reflect the true nature of the star-forming regions. In order to make a direct comparison with observations, we produced synthetic column density maps and a spectral-line cube from the simulated collapse of a large 5000 solar mass molecular cloud. The synthetic observations provide us with the means to study the formation of star-forming clumps and cores in our simulation using methods typically used by observers. Since we also have the full 3D simulation, we are able to provide a direct comparison of `observed' and `real' star-forming objects, highlighting any discrepancies in their physical properties, including the fraction of cores which are gravitationally bound. We have accomplished this by studying the global properties of the star-forming objects, in addition to performing a direct correlation of individual objects to determine the error in the observed mass estimates. By correlating the clumps found in the simulation to those found in the synthetic observations, we find that the properties of objects derived from the spectral-line data cube were more representative of the true physical properties of the clumps, due to effects of projection greatly impacting the estimates of clump properties derived from two-dimensional column density maps.</p> / Master of Science (MSc)
218

Investigating Accretion Mechanisms and Host Galaxy Environments of z~4 Quasars

Thomas, Marcus 12 1900 (has links)
Observations of quasars at the highest accessible redshifts have revealed supermassive black holes (SMBHs) with masses much too massive to be accounted for by the growth mechanisms observed in the local universe. Masses up to 10 10 M ⊙ up to z~7 seem to suggest some type of secular evolution or external influence to feed the earliest SMBHs at extremely high rates. Observations at such redshifts come at expensive technical cost and require significant dedicated space-telescope observing time. However, in the z~4 regime, SMBHs are still relatively young, exhibit extreme growth rates, and are economically accessible for both frequent shallow snapshots as well as deep observations. In this dissertation, the accretion mechanisms of z~4 quasars and the structure of their host galaxies and nearby companions are investigated to search for evolution over cosmic time as well as outside influence on star formation rates (SFRs) and SMBH growth. Building the longest available X-ray light curves of four representative radio-quiet quasars, X-ray variability is evaluated at timescales from days to years in the rest frame, and robust simulations allow both qualitative and quantitate measurements of variability to compare with samples at lower redshifts. At all timescales, X-ray variability is consistent with or lower than lower-redshift samples and no evolution is observed. To investigate regions outside the central quasar, deep rest-frame UV observations of six similar quasars whose hosts exhibit highly varying SFRs are used to map the structure of star forming regions in the host galaxy and investigate the sky density of nearby sources. Despite the suggested hypothesis that major galactic mergers influence high SFRs, no evidence of merger scenarios is shown in the high-SFR sources, and the lower-SFR, which were thought to reside in sparse environments, also reside in dense environments.
219

T Tauri stars : mass accretion and X-ray emission

Gregory, Scott G. January 2007 (has links)
I develop the first magnetospheric accretion model to take account of the observed complexity of T Tauri magnetic fields, and the influence of stellar coronae. It is now accepted that accretion onto classical T Tauri stars is controlled by the stellar magnetosphere, yet to date the majority of accretion models have assumed that the stellar magnetic field is dipolar. By considering a simple steady state accretion model with both dipolar and complex magnetic fields I find a correlation between mass accretion rate and stellar mass of the form M[dot above] proportional to M[asterisk subscript, alpha superscript], with my results consistent within observed scatter. For any particular stellar mass there can be several orders of magnitude difference in the mass accretion rate, with accretion filling factors of a few percent. I demonstrate that the field geometry has a significant effect in controlling the location and distribution of hot spots, formed on the stellar surface from the high velocity impact of accreting material. I find that hot spots are often at mid to low latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly for higher mass stars, accreting material is predominantly carried by open field lines. Material accreting onto stars with fields that have a realistic degree of complexity does so with a distribution of in-fall speeds. I have also modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating from surface magnetograms I find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, I calculate X-ray periods and make comparisons with optically determined rotation periods. I find that X-ray periods are typically equal to, or are half of, the optical periods. Further, I find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius. I also present some results that show that the largest flares detected on T Tauri stars may occur inside extended magnetic structures arising from the reconnection of open field lines within the disc. I am currently working to establish whether such large field line loops can remain closed for a long enough time to fill with plasma before being torn open by the differential rotation between the star and the disc. Finally I discuss the current limitations of the model and suggest future developments and new avenues of research.
220

Star formation across the galaxy : observations and modelling of the spectral energy distributions of young stars

Robitaille, Thomas P. January 2009 (has links)
In the last few decades, the emergence of large-scale infrared surveys has led to a revolution in the study of star formation. In particular, NASA’s Spitzer Space Telescope has recently carried out mid- and far-infrared observations of numerous star formation regions with unprecedented resolution and sensitivity, and has uncovered thousands of forming stars. In combination with present and future large-scale near-infrared and sub-mm surveys, spectral energy distributions from near-infrared to mm wavelengths will be available for these thousands of young stars. Never before has there been such a wealth of multi-wavelength data for so many young stars. Traditional techniques for studying the physical properties of young stars through their spectral energy distributions have usually focused either on the analysis of many sources using simple observational diagnostics such as colours or spectral indices, or on the analysis of a few sources through the detailed modelling of their full spectral energy distributions. The work presented in the first part of this thesis aims to bridge these two techniques through the efficient modelling of the spectral energy distributions of many young stars. In particular, the technique developed for this work makes it straightforward to find out how well different physical parameters are constrained, whether any parameters are degenerate, and whether additional data would resolve the degeneracies. In the second part of this thesis, a census of intrinsically red sources observed by Spitzer in the Galactic plane is presented, including a catalogue of over 11,000 likely young stellar objects. This sample of sources is the largest uniformly selected sample of young stars to date, and effectively provides a map of the sites of star formation in the mid-plane of the Milky-Way. In parallel, this census has uncovered over 7,000 candidate asymptotic giant branch stars, of which over 1,000 are variable at 4.5 or 8.0 microns.

Page generated in 0.0987 seconds