Spelling suggestions: "subject:"starformation"" "subject:"stars:formation""
181 |
Complex organic molecules in solar-type star forming regions / Molécules organiques complexes dans les régions de formation d'étoiles de type solaireAl-Edhari, Ali Jaber 19 October 2016 (has links)
Le but de la présente thèse est l'étude de la compléxité moléculaire dans les régions de formation stellaires. Cette thèse s'axe sur deux classes de molécule aux caractéristiques prébiotiques : les molécules organiques complexes et les cyanopolyynes.Dans ce contexte, j'ai analysé des données d'un seul échantillon de relevés spec- traux en exploitant des codes de transfert radiatif à l'équilibre thermodynamique local (LTE) et/ou non-LTE pour deux sources : une proto-étoile de type solaire dans un environnement calme (IRAS 16293-2422) et un proto-ama constitué de proto-étoile de type solaire (OMC2-FIR4).L'objectif est de trouver des similar- ités et des différences entre ces deux cas.J'ai utilisé des données issu de deux relevés spectraux : TIMASSS (The IRAS16293-2422 Millimeter And Submilimeter Spectral Survey) réalisés en 2011 (Caux et al. 2011), et ASAI(Astrochemical Surveys At IRAM) réalisés pen- dant la période 2013-2015 (eg Lopez-Sepulcre et al.2015). J'ai extrais les lignes (identification et intensité intégrée) en utilisant le paquet disponible publique- ment : CASSIS (Centre d'Analyse Scientifique de Spectres Infrarouges et Sub- millimetrique). Pour finir, j'ai utilisé le paquet GRAPES (GRenoble Analysis of Protostellar Envelope Spectral) afin de modéliser la distribution spectrale énergétique de ligne (SLED) des molécules détectées, mais aussi afin d'estimer leurs abondances à travers l'envelope de IRAS16293 et du coeur chaud OMC2- FIR4.Les principaux résultats de la thèse sont :1. Le premier recensement complet des molecules organiques complexes (COMs) dans IRAS162932. La première détéction de COMs dans l'enveloppe froide d'une proto-étoile de type solaire (IRAS16293-2422) supportant l'idée qu'un méchanisme de formation, relativement efficace pour les COMs détectées, doit exister en phase gazeuse froide.3. La découverte d'une fine corrélation entre le diméthyle-éther (DME) et le méthyle-formate (MF) suggère une relation mère fille entre ces deux espèces.4. La detection de formamide, espèce avec un très fort potentiel prébiotique, dans plusieurs protoétoiles incluant IRAS16293-2422 et OMC2-FIR4.5. Le recensement complet des cyanopolyynes dans IRAS16293 et OMC2- FIR4 avec la détection de HC3N, HC5N, DC3N et pour OMC2-FIR4: le C13 isotopologue du HC3N cyanopolyynes.Ces résultats sont le sujet principal de deux publications (Jaber et al.2014, ApJ; Lopez-Sepulcre, Jaber et al.2015,MNRAS), un article accepté (Jaber et al., A & A) et un article à soumettre (Jaber et al. A & A). / The present PhD thesis goal is the study of the molecular complexity in solar type star forming regions. It specifically focuses on two classes of molecules with a pre-biotic value, the complex organic molecules and the cyanopolyynes.At this scope, I analyzed data from single-dish spectral surveys by means of non-LTE or/and non-LTE radiative transfer codes in two sources, a solar type protostar in an isolated and quiet environment (IRAS16293-2422) and a proto-cluster of solar type protostars (OMC2-FIR4). The goal is to find similarities and differences between these two cases.I used data from two spectra surveys: TIMASSS (The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey), which has been carried out in 2011 (Caux et al. 2011), and ASAI (Astrochemical Surveys At IRAM), which has been carried out in 2013-2015 (e.g. Lopez-Sepulcre et al. 2015).I extracted the lines (identification and integrated intensity) by means of the publicly available package CASSIS (Centre dAnalyse Scientifique de Spectres Infrarouges et Submillimtriques).Finally, I used the package GRAPES (GRenoble Analysis of Protostellar Envelope Spectra) to model the Spectral Line Energy Distribution (SLED) of the detected molecules, and to estimate their abundance across the envelope and hot corino of IRAS16293-2422 and OMC2-FIR4, respectively.The major results of the thesis are:1) The first full census of complex organic molecules (COMs) in IRAS16293-2422;2) The first detection of COMs in the cold envelope of a solar type protostar (IRAS16293-2422), supporting the idea that a relatively efficient formation mechanism for the detected COMs must exist in the cold gas phase;3) The discovery of a tight correlation between the dimethyl ether (DME) and methyl format (MF), suggesting a mother-daughter relationship;4) The detection of formamide, a species with a very high pre-biotic value, in several protostars, included IRAS16293-2422 and OMC2-FIR4;5) The full census of the cyanopolyynes in IRAS16293-2422 and OMC2-FIR4, with the detection of HC3N and HC5N, DC3N and, for OMC2-FIR4, the 13C isotopologue of HC3N cyanopolyynes.These results are the focus of two published articles (Jaber et al. 2014, ApJ; Lopez-Sepulcre, Jaber et al. 2015, MNRAS), one accepted article (Jaber et al., A&A) and a final article to be submitted (Jaber et al., A&A).
|
182 |
Modelling star formation and stellar feedback in numerical simulations of galaxy formationSmith, Matthew Carey January 2018 (has links)
Remarkable progress has been made over the last few decades in furthering our understanding of the growth of cosmic structure. Nonetheless, there remains a great deal of uncertainty regarding the precise details of the complex baryonic physics that regulate galaxy formation. Any theory of star formation in galaxies must encompass the radiative cooling of gas into dark matter haloes, the formation of a turbulent, multiphase interstellar medium (ISM), the efficiency with which molecular gas is able to collapse into cores and ultimately stars, and the subsequent interaction of those stars with the gas through ionizing radiation, winds and supernova (SN) explosions. Given the highly non-linear nature of the problem, numerical simulations provide an invaluable tool with which to study galaxy formation. Yet, even with contemporary computational resources, the inherently large dynamical range of spatial scales that must be tackled makes the development of such models extremely challenging, inevitably leading to the adoption of `subgrid' approximations at some scale. In this thesis, I explore new methods of incorporating the physics of star formation and stellar feedback into high resolution hydrodynamic simulations of galaxies. I first describe a new implementation of star formation and SN feedback that I have developed for the state-of-the-art moving mesh code Arepo. I carry out a detailed study into various classes of subgrid SN feedback schemes commonly adopted in the literature, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a 'mechanical' feedback scheme that injects the appropriate amount of momentum depending on the relevant scale of the SN remnant (SNR) resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SNR, I demonstrate that the mechanical scheme is the only physically well-posed method of those examined, is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, I find that it is difficult to produce outflows with high enough mass loading factors at all but the highest resolution. I discuss the various possible solutions to this effect, including improved modelling of star formation. Moving on to a more self-consistent setup, I carry out a suite of cosmological zoom-in simulations of low mass haloes at very high resolution, performed to z = 4, to investigate the ability of SN feedback models to produce realistic galaxies. The haloes are selected in a variety of environments, ranging from voids to crowded locations. In the majority of cases, SN feedback alone has little impact at early times even in low mass haloes ($\sim10^{10}\,\mathrm{M_\odot}$ at z = 0). This appears to be due largely to the build up of very dense gas prior to SN events, suggesting that other mechanisms (such as other stellar feedback processes) are required to regulate ISM properties before SNe occur. The effectiveness of the feedback also appears to be strongly dependent on the merger history of the halo. Finally, I describe a new scheme to drive turbulence in isolated galaxy setups. The turbulent structure of the ISM very likely regulates star formation efficiencies on small scales, as well as affecting the clustering of SNe. The large range of potential drivers of ISM turbulence are not fully understood and are, in any case, unlikely to arise ab initio in a whole galaxy simulation. I therefore neglect these details and adopt a highly idealised approach, artificially driving turbulence to produce an ISM structure of my choice. This enables me to study the effects of a given level of ISM turbulence on global galaxy properties, such as the fragmentation scale of the disk and the impact on SN feedback efficiencies. I demonstrate this technique in the context of simulations of isolated dwarfs, finding that moderate levels of turbulent driving in combination with SN feedback can produce a steady-state of star formation rates and global galaxy properties, rather than the extremely violent SN feedback that is produced by a rapidly fragmenting disk.
|
183 |
Green Pea Galaxies: Physical Properties of Low-redshift Analogs of High-redshift Lyman-alpha EmittersJanuary 2018 (has links)
abstract: Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2018
|
184 |
Ionized regions and star formation in the galaxy / Régions d'hydrogène ionisé et formation stellaire de la galaxieFigueira Sebastiao, Miguel 20 September 2017 (has links)
Ma thèse est centrée sur l'étude de l'interaction entre les étoiles massives et le milieu environnant. Je suis particulièrement intéressé par l'effet qu'ont ces étoiles sur les jeunes objets stellaires observés autour d'elles. Les étoiles massives forment des régions d'hydrogène ionisé (HII) dont l'expansion supersonique conduit à la formation d'une couche de gaz et de poussières où les conditions paraissent favoriser la formation stellaire. Mon travail consiste à étudier les propriétés des jeunes objets stellaires autour de ces régions HII et à savoir si la région HII a influencé positivement la formation de ces sources.En utilisant les données Herschel, issues des programmes HOBYS et Hi-GAL, complétées par d'autres observations, j'ai étudié deux régions HII galactiques (RCW~79 et RCW~120) afin de caractériser la formation stellaire observée à leurs frontières. Pour étudier l'impact de la photoionisation, j'ai calculé le taux de formation stellaire (SFR) pour ces deux régions. Cette grandeur suggère que RCW~79 et RCW~120 sont des régions de formation stellaire actives malgré leur relative faible densité surfacique de gaz. Une nouvelle étude de la région G345 est en cours. Cette région HII est située au-dessus du plan galactique et forme activement des étoiles. Avec les données disponibles, les propriétés de la formation stellaire seront discutées. Cette étude nous donne l'opportunité de mieux comprendre les effets de la photoionisation en dehors du plan galactique. Cette région viendra augmenter notre échantillon de régions HII, ce qui est nécessaire pour avoir une vision globale des mécanismes en jeu et pour mieux comprendre l'efficacité de la formation stellaire. / My PhD thesis deals with the study of the interaction between high mass stars and their surrounding medium. I am particularly interested in the way high-mass stars affect the young stars observed around them. Massive stars form ionized (HII) regions which, during their supersonic expansion, lead to the formation of a layer of gas and dust where the conditions seem to favor star formation. My work aims at understanding the properties of star formation around Galactic HII regions.Using \herschel\, data (HOBYS and Hi-GAL programs) complemented with ancillary data, I studied two Galactic \HII\, regions (RCW~79 and RCW~120) to characterize the star formation observed at their edges. To study the impact of the ionization pressure, I computed the Star Formation Rate (SFR), which suggests that RCW~79 and RCW~120 are active star-forming regions despite their low gas surface density.A new study about the G345 region is in progress. This HII region is located above the Galactic plane and is actively forming stars. With the data available, the star formation's properties is being derived such as the spatial distribution of clumps, their stellar content, the SFR and CFE. This new study offers another opportunity to better understand the photoionization feedback out of the Galactic plane. Moreover, this will complete the sample of detailed studies of \HII\, regions, allowing us to obtain a global view of the mechanisms at play and of the efficiency of star formation in these regions.
|
185 |
Deep CO(1–0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation EfficienciesRudnick, Gregory, Hodge, Jacqueline, Walter, Fabian, Momcheva, Ivelina, Tran, Kim-Vy, Papovich, Casey, da Cunha, Elisabete, Decarli, Roberto, Saintonge, Amelie, Willmer, Christopher, Lotz, Jennifer, Lentati, Lindley 26 October 2017 (has links)
We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio >5. Both galaxies have log (M-star/M-circle dot) > 11 and are gas rich, with M-mol/(M-star + M-mol) similar to 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-M-star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z < 1 clusters.
|
186 |
From gas and dust to protostars: addressing the initial stages of star formation using observations of nearby molecular cloudsMairs, Steve 11 December 2017 (has links)
Though there has been a considerable amount of work investigating the early
stages of low-mass star formation in recent years, the general theory is only broadly
understood and several open questions remain. Specifically, the dominant physical
mechanisms which connect large-scale molecular cloud structures, intermediate-scale
filamentary gas flows, and small-scale collapsing prestellar envelopes in the interstellar
medium are poorly constrained. Even for an individual forming protostar, the evolution
of the mass accretion rate from the envelope onto the central object is debated
with little observational evidence to help guide the theoretical framework. In addition,
with the development of new technology such as the continuum imaging instrument
in operation at the James Clerk Maxwell Telescope (JCMT), the Submillimetre Common
User Bolometer Array 2 (SCUBA-2), the best practices for data reduction and
image calibration for ground-based, submillimetre wavelength observations are still
being investigated.
In this dissertation, I address facets of these open questions in five main projects
with an overarching focus on the flow of material from the largest to the smallest
scales in a molecular cloud. By performing synthetic observations of a numerical simulation
of a turbulent molecular cloud, I investigate the nature of prestellar envelopes
and find evidence of larger mass reservoirs that form filamentary structures and feed cluster formation. Then, after robustly investigating and suggesting improvements for
ground-based, submillimetre data reduction techniques, I continue to probe the connection
between larger and smaller scales by characterising structure fragmentation
in the Southern Orion A Molecular Cloud from the perspective of 850 m continuum
data. Finally, I follow star forming material to even smaller scales by exploring the
evolution of the mass accretion rate onto individual protostars. This examination
has required designing and implementing unprecedented spatial alignment and flux
calibration techniques at 850 m. Using these newly calibrated images, I am able
to identify several candidate sources that show evidence for submillimetre variability,
suggesting changes in protostellar accretion rates over several year timescales. / Graduate
|
187 |
Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449Calzetti, D., Wilson, G. W., Draine, B. T., Roussel, H., Johnson, K. E., Heyer, M. H., Wall, W. F., Grasha, K., Battisti, A., Andrews, J. E., Kirkpatrick, A., González, D. Rosa, Vega, O., Puschnig, J., Yun, M., Östlin, G., Evans, A. S., Tang, Y., Lowenthal, J., Sánchez-Arguelles, D. 12 January 2018 (has links)
We investigate the relation between gas and star formation in subgalactic regions, similar to 360. pc to similar to 1.5. kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1. mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8-500 mu m from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR-molecular gas and the SFR-total. gas relations in NGC 4449. We find that the SFR-molecular. gas relation is described by a power law with an exponent that decreases from similar to 1.5 to similar to 1.2 for increasing region size, while the exponent of the SFR-total. gas relation remains constant with a value of similar to 1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples.
|
188 |
The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of GalaxiesBouquin, Alexandre Y. K., Gil de Paz, Armando, Muñoz-Mateos, Juan Carlos, Boissier, Samuel, Sheth, Kartik, Zaritsky, Dennis, Peletier, Reynier F., Knapen, Johan H., Gallego, Jesús 25 January 2018 (has links)
We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 mu m) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S(4)G). We analyze the radial surface brightness profiles mu(FUV), mu(NUV), and mu[3.6], as well as the radial profiles of (FUV - NUV), (NUV -[3.6]), and (FUV -[3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 mu m surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than mu([3.6]) = 20.89 mag arcsec(-2), or below 3 x 10(8) M-circle dot kpc(-2) in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.
|
189 |
Planck’s dusty GEMSCañameras, R., Nesvadba, N., Kneissl, R., Frye, B., Gavazzi, R., Koenig, S., Le Floc’h, E., Limousin, M., Oteo, I., Scott, D. 23 August 2017 (has links)
We present an analysis of high-resolution ALMA interferometry of CO(4-3) line emission and dust continuum in the "Ruby" (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck's dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4 '' diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M-circle dot yr(-1) kpc(-2), amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few x10(4) M-circle dot pc(-2). The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1-10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.
|
190 |
Boötes-HiZELS: an optical to near-infrared survey of emission-line galaxies at z = 0.4–4.7Matthee, Jorryt, Sobral, David, Best, Philip, Smail, Ian, Bian, Fuyan, Darvish, Behnam, Röttgering, Huub, Fan, Xiaohui 10 1900 (has links)
We present a sample of similar to 1000 emission-line galaxies at z = 0.4-4.7 from the similar to 0.7deg(2) High-z Emission-Line Survey in the Bootes field identified with a suite of six narrow-band filters at approximate to 0.4-2.1 mu m. These galaxies have been selected on their Ly alpha (73), [O (II)] (285), H beta/[O (III)] (387) or H alpha (362) emission line, and have been classified with optical to near-infrared colours. A subsample of 98 sources have reliable redshifts from multiple narrow-band (e.g. [O (II)]-H alpha) detections and/or spectroscopy. In this survey paper, we present the observations, selection and catalogues of emitters. We measure number densities of Ly alpha, [O (II)], H beta/[O (III)] and H alpha and confirm strong luminosity evolution in star-forming galaxies from z similar to 0.4 to similar to 5, in agreement with previous results. To demonstrate the usefulness of dual-line emitters, we use the sample of dual [O (II)]-H alpha emitters to measure the observed [O (II)]/H alpha ratio at z = 1.47. The observed [O (II)]/H alpha ratio increases significantly from 0.40 +/- 0.01 at z = 0.1 to 0.52 +/- 0.05 at z = 1.47, which we attribute to either decreasing dust attenuation with redshift, or due to a bias in the (typically) fibre measurements in the local Universe that only measure the central kpc regions. At the bright end, we find that both the H alpha and Ly alpha number densities at z approximate to 2.2 deviate significantly from a Schechter form, following a power law. We show that this is driven entirely by an increasing X-ray/active galactic nucleus fraction with line luminosity, which reaches approximate to 100 per cent at line luminosities L greater than or similar to 3 x 10(44) erg s(-1).
|
Page generated in 0.0985 seconds