• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 15
  • 12
  • 10
  • 10
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 302
  • 302
  • 101
  • 86
  • 68
  • 59
  • 57
  • 52
  • 50
  • 48
  • 46
  • 36
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Étude du milieu interstellaire de galaxies chimiquement jeunes du Groupe Local / The Interstellar Medium of Local Group Chemically Young Galaxies

Gratier, Pierre 16 November 2010 (has links)
La variété de galaxies dans le Groupe Local rend possible l'étude du milieu interstellaire et de la formation d'étoiles dans des conditions différentes de celles trouvées dans la Voie Lactée, tout en conservant une grande résolution spatiale grâce à leur proximité. Nous avons étudié le milieu interstellaire de deux galaxies du Groupe Local, M33 et NGC6822, dont les métallicités sont inférieures d'un facteur 2 à 3 à celle du soleil et qui sont respectivement dix fois et cent fois moins lumineuses que la Voie Lactée. Nos observations de la transition J=2->1 du monoxyde de carbone, avec une résolution suffisante pour résoudre les nuages moléculaires géants, fournissent la première carte du milieu moléculaire de NGC6822 et la cartographie de M33 avec la meilleure combinaison de résolution et de sensibilité. Nous présentons également une cartographie haute résolution du milieu atomique de M33 à partir d'une mosaïque intérférométrique dans la raie à 21cm de l'ensemble du disque de la galaxie. Combinées avec des données allant de l'ultraviolet à l'infrarouge lointain, ces observations permettent l'étude du milieu interstellaire et de la formation d'étoiles à des échelles allant du nuage individuel à la galaxie dans son ensemble. Ces deux objets, chimiquement jeunes, semblent convertir l'hydrogène moléculaire en étoiles plus rapidement que les grandes galaxies spirales comme la Voie Lactée. Est-ce à rapprocher du taux élevé de formation d'étoiles dans les galaxies de l'univers plus jeune (z~0.5-1), également riches en gaz et bleues comme M33 et NGC6822 ? Un soin particulier a été apporté pour tenter de mesurer la masse de dihydrogène, difficile dans ce type d'objet, à l'échelle de la galaxie ainsi qu'à l'échelle du nuage. Une méthode d'identification automatique et de mesure des propriétés physiques des nuages moléculaires géants a permis d'obtenir, dans le cas de M33, le plus grand catalogue de nuage moléculaires dans une galaxie extérieure. Il en résulte que les nuages de M33 et de NGC 6822 ont, en moyenne, une largeur de raie plus faible, pour une taille donnée, que les nuages de la Voie Lactée. Dans M33, la fraction de petits nuages augmente significativement avec le rayon galactocentrique. Au moins un sixième des nuages moléculaires géants ne sont pas associés à de la formation stellaire (détectée) mais nous n'avons pas identifié de caractéristiques physiques particulières pour ces nuages. / The variety of galaxies in the Local Group enables the study of the interstellar medium and star formation under conditions different from those found in the Milky Way, while retaining a good spatial resolution due to their proximity. We have studied the interstellar medium of two Local Group galaxies, M33 and NGC6822, that have metallicities 2 to 3 times less than solar and are respectively 10 and 100 times less luminous than the Milky Way. Our large scale observations of the CO(2-1) transition, with a resolution sufficient to resolve giant molecular clouds, provide the the first molecular gas map of NGC6822 and the M33 map with the best combination of resolution and sensitivity. We also present a high resolution map of the atomic gas from an interferometric mosaic of M33's disk through the 21cm hydrogen line. Combining these observations with data ranging from ultraviolet to far infrared, we study the interstellar medium and star formation on scales ranging from individual clouds to the whole galaxy. These two chemically young objects appear to be converting molecular hydrogen into stars at a faster rate than in large spirals like the Milky Way. Can this be linked to the high star formation rate in galaxies of the earlier universe (z~0.5-1) which were bluer and gas rich like M33 and NGC6822 ? We have taken particular care to try and measure the molecular hydrogen mass, a difficult task in such objects, at the scale both of the galaxy and of the clouds. An automated molecular cloud identification and physical property measurement has been applied to the molecular gas data, yielding, in the case of M33, the largest catalog of giant molecular clouds in an external galaxy. From this catalog, it is found that the M33 molecular clouds have, on average, a smaller line-width, for a given size, than their Galactic counterparts. In M33, the fraction of small clouds increases significantly with the galactocentric radius. At least a sixth of the giant molecular clouds are not associated with detected star formation but we have not identified any particular physical characteristics for these clouds.
192

The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μ JY Radio Sources

Murphy, Eric J., Momjian, Emmanuel, Condon, James J., Chary, Ranga-Ram, Dickinson, Mark, Inami, Hanae, Taylor, Andrew R., Weiner, Benjamin J. 11 April 2017 (has links)
Our sensitive (sigma(n) approximate to 572 nJy beam(-1)), high-resolution (FWHM theta(1/2) = 0"22 approximate to 2 kpc at z greater than or similar to 1), 10 GHz image covering a single Karl G.. Jansky Very Large Array (VLA) primary beam (FWHM circle minus(1/2) approximate to 4.'25) in the GOODS-N field contains 32 sources with S-p greater than or similar to 2 mu Jy beam(-1) and optical and/or near-infrared (OIR) counterparts. Most are about as large as the star-forming regions that power them. Their median FWHM major axis is <theta(M)>= 167 +/- 32 mas approximate to 1.2 +/- 0.28 kpc, with rms scatter approximate to 91 mas approximate to 0.79 kpc. In units of the effective radius re that encloses half their flux, these radio sizes are re approximate to 69 +/- 13 mas approximate to 509 +/- 114 pc, with rms scatter approximate to 38 mas approximate to 324 pc. These sizes are smaller than those measured at lower radio frequencies, but agree with dust emission sizes measured at mm/sub-mm wavelengths and extinction-corrected H alpha sizes. We made a lowresolution (theta(1/2) = 1."0) image with approximate to 10x better brightness sensitivity, in order to detect extended sources and measure matched-resolution spectral indices alpha(10 GHz)(1.4 GHz) 10 GHz. It contains six new sources with Sp. 3.9 mJy beam-1 and OIR counterparts. The median redshift of all 38 sources is similar to z similar to = 1.24 +/- 0.15. The 19 sources with 1.4 GHz counterparts have a median spectral index of <alpha(1.4 GHz) (10 GHz)> = -0.74 +/- 0.10 10 GHz, with rms scatter approximate to 0.35. Including upper limits on a for sources not detected at 1.4 GHz flattens the median to <alpha(1.4 GHz) (10 GHz)> greater than or similar to -0.61 10 GHz, suggesting that the mu Jy radio sources at higher redshifts-and hence those selected at higher rest-frame frequencies-may have flatter spectra. If the non-thermal spectral index is alpha(NT) approximate to -0.85, the median thermal fraction of sources selected at median rest-frame frequency approximate to 20 GHz is greater than or similar to 48%.
193

The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution

Messa, M., Adamo, A., Östlin, G., Calzetti, D., Grasha, K., Grebel, E. K., Shabani, F., Chandar, R., Dale, D. A., Dobbs, C. L., Elmegreen, B. G., Fumagalli, M., Gouliermis, D. A., Kim, H., Smith, L. J., Thilker, D. A., Tosi, M., Ubeda, L., Walterbos, R., Whitmore, B. C., Fedorenko, K., Mahadevan, S., Andrews, J. E., Bright, S. N., Cook, D. O., Kahre, L., Nair, P., Pellerin, A., Ryon, J. E., Ahmad, S. D., Beale, L. P., Brown, K., Clarkson, D. A., Guidarelli, G. C., Parziale, R., Turner, J., Weber, M. 01 1900 (has links)
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 +/- 0.12 x 10(5) M-circle dot . Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 x 10(4) M-circle dot over this age range. The fraction of star formation happening in the form of bound clusters in M51 is similar to 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
194

Star formation in dwarf galaxies : using the radio continuum as an extinction-free probe

Kitchener, Ben Gerald January 2016 (has links)
To eliminate uncertainties introduced by extinction by dust in the optical, we examine to what extent the radio continuum (RC) can probe star formation in dwarf galaxies. Star formation (SF) drives galaxy formation and evolution; acquiring accurate measurements of SF thus becomes crucial in order to understand galaxies. As radio technology improves further, RC surveys will probe the fainter, more quiescent regime of the radio sky. Having a robust manner by which to convert RC luminosities to star formation rate (SFR) has the potential to provide millions of independent SFR measurements out to intermediate redshifts. In order to calibrate the RC to infer SFR, the 40 dwarf galaxies that make up the LITTLE THINGS sample were chosen as the bedrock of the thesis due to the large range of galactic parameters that they cover. RC observations of these galaxies were taken with the VLA between L- and Ka-band (1-33GHz) using the B-, C-, and Darrays, yielding images with 3-10" resolution and rms noise levels between 3 and 15 μJy beam⁻¹. On a global scale, 27 out of the 40 dwarf galaxies exhibited RC emission above the detection threshold, 17 of which were new RC detections. The general picture is an interstellar medium (ISM) largely void of RC emission, interspersed by isolated pockets of RC associated with SF regions; this general picture agreed with what was expected given current models of dwarf galaxies - weaker magnetic fields in the ISM leading to a higher escape of CRe (and resulting reduction in RCNTh emission). This was also backed-up by the relatively low RCNTh fraction - 61 ± 7% at C-band. The observed RC-SFR relation was calibrated to allow the observed RC luminosity of a gas rich dwarf galaxy to be used to infer the SFR; the calibration takes the form SFR [M⊙ yr⁻¹] = 5 x 10⁻¹⁸(RC [WHz⁻¹])0.85. On a resolved basis, only the RCNTh was examined - this is because whether scales of 1 pc, or 1 kpc are investigated, the relationship between the Hα (current SF) and RCTh was not expected to change. Calibrating the resolved RCNTh-SFR relation was best done when using discrete SF regions which varied from 10s up to 100s of pc in size. On these scales, the calibration allows the SFR to be inferred from an observed RCNTh luminosity, and takes the form SFR [M⊙ yr⁻¹] = 1.36 x 10⁻²³(LNTh [WHz⁻¹])1.15. This calibration, however, is only valid for resolved regions forming stars at a rate ≳ 2 x 10⁻⁴M⊙ yr⁻¹. Despite the low flux densities of RCNTh measured from these discrete SF regions, the RCNTh still works well as a SFR tracer whereas Hα, which is largely dependent on stars with mass ≳ 18M⊙, and is thus dependent on the high mass tail of the stellar IMF, will suffer from stochasticity. In a few dwarfs, the equipartition magnetic field strength reaches as high as 30 μG in multiple 100 pc regions, and in one case, 70 μG. However, generally, the weaker magnetic fields in the ISM give the CRe longer lifetimes, and thus more time to be advected out of the galaxy with the magnetic fields frozen into the gas in outflows, or diffuse. This explains in part the lack of RCNTh emission observed in the ISM of dwarf galaxies. Through implementing a simple galactic CRemodel, itwas found that the RCNTh emission associated with the CRe can be used as a SF tracer from approximately 5 up to 70Myr following a burst of SF, while RCTh can be used in its absence prior to 5Myr. The RCNTh luminosity reaches its peak approximately 55Myr after the SF episode, but actually remains nearly constant over the 60Myr following the SF episode, highlighting its potential to be used to infer SFR. The CRemodel also tracked the evolution of the RCNTh spectral index with time. Between values of about -0.4 and -0.7, the RCNTh spectral index can be calibrated to infer the time elapsed since a burst of SF through t[Myr] = -25αNTh. RCNTh spectral indices of -0.8 are consistent with ages between 20 and 55Myr, suggesting that the oft observed spectral index of -0.8 in galaxies may come from the fact that C-band RCNTh emission is dominated by the steep spectral indices of -0.8 from these older SF regions (20-55Myr). For the galaxies that displayed RCNTh emission that was bright enough and sufficiently well resolved, a spectral decomposition of the RC spectrum was performed to infer Hα-independent RCTh, RCNTh, and RCNTh spectral index maps. The spectral decomposition showed DDO50 and NGC1569 to have a low thermal fraction of 23% and 10%, respectively, at C-band, while NGC2366 and NGC4214 were shown to have higher thermal fractions of 48% and 66%, respectively. In summary, dwarf galaxies are not only faint in the RC due to their lower SF activity, but they are also fainter than expected due to CRe escape. Nonetheless, the RC can be used to probe SF in dwarf galaxies not only on a global scale, but also within discrete SF complexes 10s to 100s of pc in size. Theoretically, the RC can be used right from the onset of a burst of SF, where RCTh will dominate, up to ~ 70Myr, at which point RCNTh will dominate. Calibrated by the RC observations in this thesis, both resolved and global SFRs of gas rich, low mass galaxies can be inferred with an uncertainty of ±0.2 dex; the relations allow SFRs of between approximately 2x10⁻⁴ and 0.1M⊙ yr⁻¹ to be inferred.
195

A molecular line and continuum study of water maser sources

Jenness, Timothy January 1996 (has links)
Recent observations at the James Clerk Maxwell Telescope (JCMT) and elsewhere have identified a class of very deeply embedded, possibly protostellar, sources which are not associated with any of the traditional indicators of star formation, such as HII regions and near-infrared emission, but which do lie close to otherwise isolated H2O masers. This thesis describes a search, based on catalogues of known water maser positions, for new deeply embedded cores similar to those found in S106 and M17. In addition to millimetre molecular line and submillimetre continuum observations, 22 GHz and 8 GHz radio observations have been made of a number of the sources in order to obtain more accurate maser positions and to search for any associated compact HII regions. Observing sources such as these in less active star forming regions provides a cleaner environment in which to examine the maser excitation and the ongoing process of star formation. A sample of 44 water maser sources was observed from which submillimetre continuum emission was detected from 40 (91 per cent). The most striking feature of the data is the close association of the masers with the submillimetre cores: the data are consistent with masers occurring within 6000 AU of the embedded core. The results can be summarised as follows: o High temperature gas has been detected, and most of the submillimetre cores have mean densities greater than 10^6 /cm^3. o The masers have low velocities with respect to the molecular cloud and are uniformly distributed within 6600 AU of the submillimetre core. o The isotropic maser luminosity is proportional to the far-infrared luminosity over more than 5 orders of magnitude. o There is no obvious correlation between the near-infrared spectral class and the maser emission. o Where a radio spectral index is known the majority of sources are optically thin HII regions. The bulk of the remainder are undetected and have a flux density less than 1 mJy. o Masers not associated directly with a submillimetre core show explicit evidence for shocks. Embedded cores \emph{have} been detected with this survey and the maser emission is consistent with collisionally excited pump models.
196

Evolution of emission line properties and metallicities of star-forming galaxies up to z ~ 3

Cullen, Fergus January 2015 (has links)
Until recently, obtaining rest-frame optical spectra of galaxies at z > 1 was a time consuming and challenging observation due to the difficult nature of near-infrared (near-IR) spectroscopy. However, with the advent of second generation ground-based near-IR spectrographs (e.g. KMOS, MOSFIRE), and the new low resolution near-IR grisms on the Hubble Space Telescope (HST), we have entered a new era in the study of high redshift galaxies. This thesis explores the physical properties of star-forming galaxies in the redshift range 1 < z < 3 by utilising a custom reduction of the 3D-HST near-IR grism spectroscopic survey. One of the most important observational constraints on the evolution of galaxies is the mass-metallicity relation (MZR), which is sensitive to both the star-formation history and various inflow/outflow processes. I use the 3D-HST spectra to provide a new constraint on the MZR at 2:0 < z < 2:3, and moreover measure the O/H abundance directly from the oxygen and hydrogen emission lines ([OII], [OIII] and Hβ) as opposed to the more common method at high redshift of inferring O/H from the N/H ratio (via [NII] and Hα). I show that the traditional form of the MZR is recovered from the 3D-HST data, with metallicity increasing with the stellar mass of a galaxy. However, the absolute metallicity values I derive are inconsistent with previous N/H-based measurements of metallicity at these redshifts. Moreover, I show that the 3D-HST data is inconsistent with the `fundamental metallicity relation' (FMR), and that, contrary to previous claims, this local Universe relation may not hold out to z & 2. To investigate this metallicity discrepancy further, I measure the evolution of the [OIII]/Hβ nebular emission line ratio in the 3D-HST spectra over the redshift range 1:3 < z < 2:3. I compare this observed line ratio evolution with state-of-the- art theoretical models which take into account the independent evolution of the ionization parameter, electron density and metallicity of star-forming regions with redshift. The homogeneous 3D-HST dataset allows me to perform a consistent analysis of this evolution which takes into account line luminosity selection effects. I show that, according to models, the observed [OIII]/Hβ evolution cannot be accounted for by pure metallicity evolution. Instead I am able to infer that the line ratio evolution is more consistent with, at the very least, an evolution to stronger ionizing conditions at high redshift, and perhaps even denser star-forming regions. I explore how this result can also explain the observed discrepancy between high redshift metallicity measurements. In light of this finding, I revisit the MZR at z >~ 2 and employ a purely theoretical approach to inferring metallicities from nebular lines, which is able to account for an evolution in ionization conditions. I then use a selection of galaxies from the local Universe, which mimic the properties of high redshift galaxies, to derive a more robust ionization sensitive, conversion, between N/H and O/H. With this new conversion which I am able to bring the previous inconsistent metallicity measurements at z >~ 2 back into agreement. Finally, I am able to show that, in this new formalism, the metallicity evolution between z = 2 and z = 3 is perhaps not as large as previously reported. To conclude I discuss ongoing work as part of the KMOS Deep Survey (KDS) being undertaken with the near near-IR Multi-Object Spectrograph KMOS on the VLT. I describe the observations and data reduction that has been completed to date and describe how this instrument will allow me to extend the work presented in this thesis to z > 3. I also introduce FIGS, a new HST near-IR grism survey seeking to spectroscopically identify galaxies at 5:5 < z < 8:5 and work I have begun in exploring this dataset.
197

Infrared dark clouds and star formation : velocity gradients and deuteration

Lackington Werner, Matias Andres January 2015 (has links)
In this thesis I present work done on the subject of star formation through the study of infrared dark clouds. We studied the velocity fields in several IRDCs using spectral line mapping. We also performed observations of a high density tracer and its deuterated counterpart. These observations allow me to assess the kinematics of these clouds and the evolutionary state of the observed targets. The sample observed is an important starting point for the search of early and quiescent high-mass regions. We mapped several IRDCs using the 22m ATNF Mopra Telescope in high-density molecular tracers at 3 mm, HNC (1-0) and N2H+ (1-0). We present integrated intensity emission and velocity field maps of these IRDCs. The molecular emission in the maps matches well with the extinction seen in the mid-IR. For an IRDC-complex we see connecting emission in the whole filament. We calculate kinematic distances and masses of the IRDCs. The IRDCs typically display an ordered velocity field within the clouds. The mean velocity gradient of the sample was 0.4 km/s/pc. We show how this velocity gradient can mean gas flows within the cloud into the central regions in order to feed the central cores. We observed 54 cores in IRDCs using N2H+ (1-0) and (3-2) to determine the kinematics of the densest material, where stars will form. We also observed N2D+ (3-2) towards 29 of the brightest peaks to analyze the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N2D+ (3-2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in the sources with detected N2D+ (3-2) has a mean of 0.024 and reaches a maximum value of 0.14. For most of the sources the material traced by N2D+ and N2H+ (3-2) still has significant turbulent motions, however three objects show subthermal N2D+ velocity dispersion. Surprisingly the presence or absence of an embedded 70 micron source shows no correlation with the detection of N2D+ (3-2), nor does it correlate with any change in velocity dispersion or excitation temperature. Comparison with recent models of deuteration suggest evolutionary timescales of these regions of several freefall times or less.
198

Formação estelar no complexo de nuvens moleculares em Monoceros / Star Formation in the Molecular Cloud Complex in Monoceros

Diana Renata Gonçalves Gama 04 May 2012 (has links)
Comparamos duas nuvens moleculares, Rosette (RMC) e Monoceros R2 (Mon R2), localizadas no Complexo de Monoceros com o objetivo de estudar suas condições físicas relacionadas às primeiras fases da formação estelar. Tratam-se de regiões interessantes por apresentarem características que podem ser confrontadas com a hipótese de formação estelar provocada pela passagem de nuvens de altas velocidades atravessando o plano Galáctico (HVCs). Avaliamos as propriedades dessas nuvens por meio de mapas de vários traçadores da formação estelar com base em diferentes bandas espectrais visando estudar a estrutura de densidade das nuvens, bem como os objetos estelares jovens, em particular as fontes masers de H2O que apresentam características típicas de protoestrelas massivas. Nossa análise permitiu verificar algumas semelhanças entre RMC e Mon R2, mas também nos revelou diferenças interessantes. De uma forma geral há concordância entre AV, CO e emissão de poeira em 100 microns; RMC possui muitos clumps, entretanto poucos aglomerados e nebulosidades exceto uma única região HII principal (NGC2244) enquanto Mon R2 apresenta poucos clumps, vários aglomerados jovens e pequenas nebulosidades; em RMC há mais estrelas massivas, distribuídas uniformemente; Mon R2 tem poucas estrelas B, distribuídas em estruturas filamentárias com maiores índices de AV, do que em RMC; as fontes emissão maser apresentam cores IRAS compatíveis com candidatas a protoestrelas massivas, mas não parecem estar associadas a fontes de raios-X, sugerindo que masers estão relacionados à fase protoestelar, ao passo que fontes-X representam fase Pré-Sequência Principal. Concluímos que a distribuição de objetos e a estrutura das nuvens estão de acordo com as simulações dos modelos de HVCs. Porém, nossos resultados também são compatíveis com modelos alternativos, que simulam a dinâmica da Galáxia, para explicar o cenário de formação estelar no Complexo de Monoceros. / We compare two molecular clouds of the Monoceros Complex in order to study their physical conditions related to the early stages of star formation. The selected clouds, Rosette (RMC) and Monoceros R2 (Mon R2), are interesting regions due to their characteristics that may be confronted with the hypothesis of star formation triggered by high velocity clouds (HVCs) crossing through the Galactic plane. We evaluate the properties of these clouds using maps obtained on the basis of dierent spectral bands to trace the density of the clouds and the young stellar objects, in particular H2O masers that show typical features of massive protostars. This analysis allowed us to verify some similarities between RMC and Mon R2, but also revealed interesting dierences. In a general way there is an agreement between Av, CO and dust emission at 100 microns; RMC has many clumps, a few clusters and a single main nebulosity that is an HII region around NGC2244, while Mon R2 has a few clumps, several young clusters and small nebulosities. In RMC there is a large number of massive stars, uniformly distributed, while Mon R2 has a few B stars, distributed in lamentary structures with levels of Av higher than in RMC; maser sources have IRAS colors compatible with massive protostars candidates, but do not seem to be associated with X-ray sources, suggesting that masers are more related to the protostellar phase, while X-ray sources are related to pre main sequence phase. We conclude that the distribution of objects and the structure of the clouds are in accordance with the simulations of HVC models. However, our results are also compatible with alternative models of the Galaxy dynamics that explain the scenario of star formation in the Monoceros Complex.
199

Formação estelar induzida por choques de Supernovas e por Turbulência Magneto-hidrodinâmica / Star formation triggered by Supernovae shocks and magneto-hydrodynamical turbulence

Márcia Regina Moreira Leão 30 November 2012 (has links)
Neste trabalho investigamos os efeitos de choques (induzidos por supernovas) e de turbulência magneto-hidrodinâmica no processo de formação estelar. Primeiramente, considerando o impacto de um remanescente de supernova (RSN) com uma nuvem neutra magnetizada derivamos analiticamente um conjunto de condições através das quais estas interações podem levar à formação de estruturas densas capazes de tornarem-se gravitacionalmente instáveis e formar estrelas. Usando estas condições, construímos diagramas do raio do RSN, $R_$, versus a densidade inicial da nuvem, $n_c$, os quais delimitam um domínio no espaço paramétrico onde a formação estelar é permitida. Estes diagramas foram testados através de simulações numéricas magneto-hidrodinâmicas tridimensionais (3D MHD) onde seguimos a evolução espaço-temporal da interação de um RSN com uma nuvem auto-gravitante. Verificamos que a análise numérica está de acordo com os resultados previstos pelos diagramas. Observamos ainda que a presença de um campo magnético fraco, $\\sim 1 \\; \\mu$G, inicialmente homogêneo e perpendicular à velocidade de impacto do RSN, resulta em uma pequena diminuição da região permitida para formação estelar nos diagramas quando comparado a diagramas para nuvens não magnetizadas. Já um campo magnético mais intenso ($\\sim 10\\;\\mu$G) causa um encolhimento significativo nestas, como esperado. Embora derivados de considerações analíticas simples estes diagramas fornecem uma ferramenta útil para identificar locais onde a formação estelar pode ter sido induzida pelo impacto de uma onda de choque de SN. Aplicações a algumas regiões de nossa Galáxia (como a Grande Concha de CO na direção de Escorpião e a Nuvem Periférica 2 na direção da constelação de Cassiopeia) mostram que a formação estelar nestes locais pode ter sido induzida por uma onda de choque de um RSN em passado recente, quando se consideram valores específicos para as condições iniciais das nuvens impactadas.%, para valores específicos de raio do RSN e uma faixa de densidades iniciais possíveis para estas nuvens. Avaliamos também a eficiência de formação estelar efetiva para estas interações e encontramos que esta é geralmente menor do que os valores observados para a nossa Galáxia (sfe $\\sim$ 0.01$-$0.3). Este resultado é consistente com outros trabalhos da literatura e também sugere que este mecanismo, embora poderoso para induzir a formação de estruturas, turbulência supersônica e eventualmente formação estelar local, não parece ser suficiente para induzir a formação estelar global em galáxia normais, nem mesmo quando o campo magnético é desprezado. Além do estudo acima, exploramos ainda a formação estelar considerando a injeção prévia de turbulência (por um mecanismo físico arbitrário) em nuvens magnetizadas. Para uma nuvem ou glóbulo de nuvem molecular formar estrelas deve haver transporte de fluxo magnético das regiões internas mais densas para as regiões externas menos densas da nuvem, de outra forma o colapso poderá ser impedido pela força magnética. Consideramos aqui um novo mecanismo. Reconexão magnética rápida, a qual ocorre em presença de turbulência, pode induzir um processo de difusão eficiente dos campos magnéticos. Neste trabalho investigamos esse processo por meio de simulações numéricas 3D MHD e suas implicações para a formação estelar, estendendo um estudo prévio realizado para nuvens de simetria cilíndrica e sem auto-gravidade (Santos-Lima et al. 2010). Aqui consideramos nuvens mais realistas com potenciais gravitacionais esféricos (devido a estrelas embebidas) e também levando em conta os efeitos da auto-gravidade do gás. Determinamos, pela primeira vez, quais as condições em que o transporte do campo magnético devido à difusão por reconexão turbulenta leva uma nuvem inicialmente subcrítica a tornar-se super-crítica e capaz de colapsar para formar estrelas. Nossos resultados indicam que a formação de um núcleo supercrítico é resultado de uma complexa interação entre gravidade, auto-gravidade, intensidade do campo magnético e turbulência aproximadamente trans-sônica e trans-Alfvénica. Em particular, a auto-gravidade favorece a difusão do campo magnético por reconexão turbulenta e, como resultado, seu desacoplamento do gás colapsante torna-se mais eficiente do que quando apenas um campo gravitacional externo está presente. Demonstramos que a difusão por reconexão turbulenta é capaz de remover fluxo magnético da maior parte das nuvens investigadas, porém somente uma minoria desenvolve núcleos aproximadamente críticos ou super-críticos, o que é consistente com as observações. A formação destes é restrita ao seguinte intervalo de condições iniciais para as nuvens: razão pressão térmica-pressão magnética, $\\beta \\sim 1$ a $3$, razões entre a energia turbulenta e a energia magnética $E_/E_\\sim 1.62$ a $2.96$, e densidades $50 < n < 140$ cm$^$, quando consideramos massas estelares M$_{\\star}\\sim 25$M$_{\\odot}$, implicando uma massa total da nuvem (gás + estrelas) M$_\\lesssim 120$M$_{\\odot}$. / In this work, we have investigated the effects of shocks (induced by supernovae) and magnetohydrodynamical turbulence in the process of star formation. Considering first, the impact of a supernova remnant (SNR) with a neutral magnetized cloud we derived analytically a set of conditions through which these interactions can lead to the formation of dense structures able to become gravitationally unstable and form stars. Using these conditions, we have built diagrams of the SNR radius, $R_{SNR}$, versus the initial cloud density, $n_c$, that constrain a domain in the parameter space where star formation is allowed. These diagrams have been also tested by means of three-dimensional magneto-hydrodynamical (3D MHD) numerical simulations where the space-time evolution of a SNR interacting with a self-gravitating cloud is followed. We find that the numerical analysis is in agreement with the results predicted by the diagrams. We have also found that the effects of a weak homogeneous magnetic field ($\\sim 1 \\; \\mu$G) approximately perpendicular to the impact velocity of the SNR results only a small decrease of the allowed zone for star formation in the diagrams when compared with the diagrams with non-magnetized clouds. A larger magnetic field ($\\sim 10\\;\\mu$G) on the other hand, causes a significant shrinking of the star formation zone, as one should expect. Although derived from simple analytical considerations, these diagrams provide a useful tool for identifying sites where star formation could be triggered by the impact of a SN blast wave. Applications of them to a few regions of our own Galaxy (e.g., the large CO shell in the direction of Scorpious, and the Edge Cloud 2 in the direction of the Cassiopeia constellation) have revealed that star formation in those sites could have been triggered by shock waves from SNRs in a recent past, when considering specific values of the SNR radius and the initial conditions in the neutral clouds. We have also evaluated the effective star formation efficiency for this sort of interaction and found that it is generally smaller than the observed values in our Galaxy (sfe $\\sim$ 0.01$-$0.3). This result is consistent with previous work in the literature and also suggests that the mechanism presently investigated, though very powerful to drive structure formation, supersonic turbulence and eventually, local star formation, does not seem to be sufficient to drive $global$ star formation in normal star forming galaxies, not even when the magnetic field is neglected. Besides the study above, we have also explored star formation considering a priori injection of turbulence (by an arbitrary physical mechanism) in magnetized clouds. For a molecular cloud clump to form stars some transport of magnetic flux may be required from the denser, inner regions to the outer regions of the cloud, otherwise this can prevent the gravitational collapse. We have considered here a new mechanism. Fast magnetic reconnection which takes place in the presence of turbulence can induce a process of reconnection diffusion of the magnetic field. In this work, we have investigated this process by means of 3D MHD numerical simulations considering its implications on star formation. We have extended a previous study which considered clouds with cylindrical geometry and no self-gravity (Santos-Lima et al. 2010). Here, we considered more realistic clouds with spherical gravitational potentials (from embedded stars) and also accounted for the effects of the gas self-gravity. We demonstrated that reconnection diffusion takes place. We have also, for the first time, determined the conditions under which reconnection diffusion is efficient enough to make an initially subcritical cloud clump to become supercritical and collapse. Our results indicate that the formation of a supercritical core is regulated by a complex interplay between gravity, self-gravity, magnetic field strength and nearly transonic and trans-Alfvénic turbulence. In particular, self-gravity helps reconnection diffusion and, as a result, the magnetic field decoupling from the collapsing gas becomes more efficient than in the case when only an external gravitational field is present. We have demonstrated that reconnection diffusion is able to remove magnetic flux from most of the collapsing clumps analysed, but only a few of them develop nearly critical or supercritical cores, which is consistent with the observations. Their formation is restricted to a range of initial conditions for the clouds as follows: thermal to magnetic pressure ratios $\\beta \\sim$ 1 to 3, turbulent to magnetic energy ratios $E_{turb}/E_{mag}\\sim 1.62$ to $2.96$, and densities $50 < n < 140$ cm$^{-3}$, when considering stellar masses M$_{\\star}\\sim 25$M$_{\\odot}$, implying total (gas+stellar) masses M$_{tot} \\lesssim 120$M$_{\\odot}$.
200

Radiative feedback from massive stars in low-metallicity environments / 低金属度環境における大質量星輻射の影響

Fukushima, Hajime 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21565号 / 理博第4472号 / 新制||理||1642(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 細川 隆史, 教授 田中 貴浩, 教授 井岡 邦仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.5435 seconds