• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

以矩陣分解法計算特別階段形機率分配並有多人服務之排隊模型 / A phase-type queueing model with multiple servers by matrix decomposition approaches

顏源亨, Yen, Yuan Heng Unknown Date (has links)
穩定狀態機率是讓我們了解各種排隊網路性能的基礎。在擬生死過程(Quasi-Birth-and-Death) Phase-type 分配中求得穩定狀態機率,通常是依賴排隊網路的結構。在這篇論文中,我們提出了一種計算方法-LU分解,可以求得在排隊網路中有多台服務器的穩定狀態機率。此計算方法提供了一種通用的方法,使得複雜的大矩陣變成小矩陣,並減低計算的複雜性。當需要計算一個複雜的大矩陣,這個成果變得更加重要。文末,我們提到了離開時間間隔,並用兩種方法 (Matlab 和 Promodel) 去計算期望值和變異數,我們發現兩種方法算出的數據相近,接著計算離開顧客的時間間隔相關係數。最後,我們提供數值實驗以計算不同服務器個數產生的離去過程和相關係數,用來說明我們的方法。 / Stationary probabilities are fundamental in response to various measures of performance in queueing networks. Solving stationary probabilities in Quasi-Birth-and-Death(QBD) with phase-type distribution normally are dependent on the structure of the queueing network. In this thesis, a new computing scheme is developed for attaining stationary probabilities in queueing networks with multiple servers. This scheme provides a general approach of consindering the complexity of computing algorithm. The result becomes more significant when a large matrix is involved in computation. After determining the stationary probability, we study the departure process and the moments of inter-departure times. We can obtain the moment of inter-departure times. We compute the moments of inter-departure times and the variance by applying two numerical methods (Matlab and Promodel). The lag-k correlation of inter-departure times is also introduced in the thesis. The proposed approach is proved theoretically and verifieded with illustrative examples.
2

Passeios aleatórios em redes finitas e infinitas de filas / Random walks in finite and infinite queueing networks

Gannon, Mark Andrew 27 April 2017 (has links)
Um conjunto de modelos compostos de redes de filas em grades finitas servindo como ambientes aleatorios para um ou mais passeios aleatorios, que por sua vez podem afetar o comportamento das filas, e desenvolvido. Duas formas de interacao entre os passeios aleatorios sao consideradas. Para cada modelo, e provado que o processo Markoviano correspondente e recorrente positivo e reversivel. As equacoes de balanceamento detalhado sao analisadas para obter a forma funcional da medida invariante de cada modelo. Em todos os modelos analisados neste trabalho, a medida invariante em uma grade finita tem forma produto. Modelos de redes de filas como ambientes para multiplos passeios aleatorios sao estendidos a grades infinitas. Para cada modelo estendido, sao especificadas as condicoes para a existencia do processo estocastico na grade infinita. Alem disso, e provado que existe uma unica medida invariante na rede infinita cuja projecao em uma subgrade finita e dada pela medida correspondente de uma rede finita. Finalmente, e provado que essa medida invariante na rede infinita e reversivel. / A set of models composed of queueing networks serving as random environments for one or more random walks, which themselves can affect the behavior of the queues, is developed. Two forms of interaction between the random walkers are considered. For each model, it is proved that the corresponding Markov process is positive recurrent and reversible. The detailed balance equa- tions are analyzed to obtain the functional form of the invariant measure of each model. In all the models analyzed in the present work, the invariant measure on a finite lattice has product form. Models of queueing networks as environments for multiple random walks are extended to infinite lattices. For each model extended, the conditions for the existence of the stochastic process on the infinite lattice are specified. In addition, it is proved that there exists a unique invariant measure on the infinite network whose projection on a finite sublattice is given by the corresponding finite- network measure. Finally, it is proved that that invariant measure on the infinite lattice is reversible.
3

Passeios aleatórios em redes finitas e infinitas de filas / Random walks in finite and infinite queueing networks

Mark Andrew Gannon 27 April 2017 (has links)
Um conjunto de modelos compostos de redes de filas em grades finitas servindo como ambientes aleatorios para um ou mais passeios aleatorios, que por sua vez podem afetar o comportamento das filas, e desenvolvido. Duas formas de interacao entre os passeios aleatorios sao consideradas. Para cada modelo, e provado que o processo Markoviano correspondente e recorrente positivo e reversivel. As equacoes de balanceamento detalhado sao analisadas para obter a forma funcional da medida invariante de cada modelo. Em todos os modelos analisados neste trabalho, a medida invariante em uma grade finita tem forma produto. Modelos de redes de filas como ambientes para multiplos passeios aleatorios sao estendidos a grades infinitas. Para cada modelo estendido, sao especificadas as condicoes para a existencia do processo estocastico na grade infinita. Alem disso, e provado que existe uma unica medida invariante na rede infinita cuja projecao em uma subgrade finita e dada pela medida correspondente de uma rede finita. Finalmente, e provado que essa medida invariante na rede infinita e reversivel. / A set of models composed of queueing networks serving as random environments for one or more random walks, which themselves can affect the behavior of the queues, is developed. Two forms of interaction between the random walkers are considered. For each model, it is proved that the corresponding Markov process is positive recurrent and reversible. The detailed balance equa- tions are analyzed to obtain the functional form of the invariant measure of each model. In all the models analyzed in the present work, the invariant measure on a finite lattice has product form. Models of queueing networks as environments for multiple random walks are extended to infinite lattices. For each model extended, the conditions for the existence of the stochastic process on the infinite lattice are specified. In addition, it is proved that there exists a unique invariant measure on the infinite network whose projection on a finite sublattice is given by the corresponding finite- network measure. Finally, it is proved that that invariant measure on the infinite lattice is reversible.

Page generated in 0.1353 seconds