Spelling suggestions: "subject:"statistische lerntheorie"" "subject:"statistische lerntheorien""
1 |
Data-driven modeling and simulation of spatiotemporal processes with a view toward applications in biologyMaddu Kondaiah, Suryanarayana 11 January 2022 (has links)
Mathematical modeling and simulation has emerged as a fundamental means to understand physical process around us with countless real-world applications in applied science and engineering problems. However, heavy reliance on first principles, symmetry relations, and conservation laws has limited its applicability to a few scientific domains and even few real-world scenarios. Especially in disciplines like biology the underlying living constituents exhibit a myriad of complexities like non-linearities, non-equilibrium physics, self-organization and plasticity that routinely escape mathematical treatment based on governing laws. Meanwhile, recent decades have witnessed rapid advancement in computing hardware, sensing technologies, and algorithmic innovations in machine learning. This progress has helped propel data-driven paradigms to achieve unprecedented practical success in the fields of image
processing and computer vision, natural language processing, autonomous transport, and etc. In the current thesis, we explore, apply, and advance statistical and machine learning strategies that help bridge the gap between data and mathematical models, with a view toward modeling and simulation of spatiotemporal processes in biology.
As first, we address the problem of learning interpretable mathematical models of biologial process from limited and noisy data. For this, we propose a statistical learning framework called PDE-STRIDE based on the theory of stability selection and ℓ0-based sparse regularization for parsimonious model selection. The PDE-STRIDE framework enables model learning with relaxed dependencies on tuning parameters, sample-size and noise-levels. We demonstrate the practical applicability of our method on real-world data by considering a purely data-driven re-evaluation of the advective triggering hypothesis explaining the embryonic patterning event in the C. elegans zygote.
As a next natural step, we extend our PDE-STRIDE framework to leverage prior knowledge from physical principles to learn biologically plausible and physically consistent models rather than models that simply fit the data best. For this, we modify the PDE-STRIDE framework to handle structured sparsity constraints for grouping features which enables us to: 1) enforce conservation laws, 2) extract spatially varying non-observables, 3) encode symmetry relations associated with the underlying biological process. We show several applications from systems biology demonstrating the claim that enforcing priors dramatically enhances the robustness and consistency of the data-driven approaches.
In the following part, we apply our statistical learning framework for learning mean-field deterministic equations of active matter systems directly from stochastic self-propelled active particle simulations. We investigate two examples of particle models which differs in the microscopic interaction rules being used. First, we consider a self-propelled particle model endowed with density-dependent motility character. For the chosen hydrodynamic variables, our data-driven framework learns continuum partial differential equations that are in excellent agreement with analytical derived coarse-grain equations from Boltzmann approach. In addition, our structured sparsity framework is able to decode the hidden dependency between particle speed and the local density intrinsic to the self-propelled particle model. As a second example, the learning framework is applied for coarse-graining a popular stochastic particle model employed for studying the collective cell motion in epithelial sheets. The PDE-STRIDE framework is able to infer novel PDE model that quantitatively captures the flow statistics of the particle model in the regime of low density fluctuations.
Modern microscopy techniques produce GigaBytes (GB) and TeraBytes (TB) of data while imaging spatiotemporal developmental dynamics of living organisms. However, classical statistical learning based on penalized linear regression models struggle with issues like accurate computation of derivatives in the candidate library and problems with computational scalability for application to “big” and noisy data-sets. For this reason we exploit the rich parameterization of neural networks that can efficiently learn from large data-sets. Specifically, we explore the framework of Physics-Informed Neural Networks (PINN) that allow for seamless integration of physics priors with measurement data. We propose novel strategies for multi-objective optimization that allow for adapting PINN architecture to multi-scale modeling problems arising in biology. We showcase application examples for both forward and inverse modeling of mesoscale active turbulence phenomenon observed in dense bacterial suspensions. Employing our strategies, we demonstrate orders of magnitude gain in accuracy and convergence in comparison with conventional formulation for solving multi-objective optimization in PINNs.
In the concluding chapter of the thesis, we skip model interpretability and focus on learning computable models directly from noisy data for the purpose of pure dynamics forecasting. We propose STENCIL-NET, an artificial neural network architecture that learns solution adaptive spatial discretization of an unknown PDE model that can be stably integrated in time with negligible loss in accuracy. To support this claim, we present numerical experiments on long-term forecasting of chaotic PDE solutions on coarse spatio-temporal grids, and also showcase de-noising application that help decompose spatiotemporal dynamics from the noise in an equation-free manner.
|
2 |
Modellierung dynamischer Prozesse mit radialen Basisfunktionen / Modeling of dynamical processes using radial basis functionsDittmar, Jörg 20 August 2010 (has links)
No description available.
|
Page generated in 0.1032 seconds