181 |
Vacuum Steam Technology for Rapid Plasticization and Bending of MapleWright, Robert S. 11 August 2011 (has links)
Bending wood dates back to antiquity in the form of baskets from willow branches and when boats were no longer made of hollowed out logs. Fresh growth willow twigs are readily bent into practically any shape; however, when wood has been separated from the tree and dried it is more rigid, difficult to bend, and breakable. Steamed wood is less rigid since adding moisture and heat to wood results in plasticization. Steaming at atmospheric pressure is the common technique for wood bending where diffusion prevails as the predominant mechanism governing moisture movement. Applications using conventional atmospheric steaming are time consuming and can result in failed bends. While other wood plasticization methods exist, Vacuum Steam Technology offers a promising method that utilizes pressure differentials to accelerate the addition of steam to wood due to water vapor bulk flow and subsequently an accelerated temperature rise and moisture addition. The objectives of this work were: (1) determine whether cycles of vacuum and steaming could significantly improve the plastic-deformable state relative to the classic process of atmospheric steaming given equivalent treatment times when beginning with low moisture content (<10%) maple, and (2) compare the work required to bend to form between Vacuum Steam Technology treated maple and atmospheric-steamed maple when beginning with low moisture content (<10%) specimens. A procedure for Vacuum Steam Technology to enable rapid plasticization of maple specimens from a kiln-dried state was developed. Kiln dried maple specimens were either treated according to the Vacuum Steam Technology procedure or were atmospherically steamed for a time equivalent to the Vacuum Steam Technology treatment and then bent into a 180° semi-circular form. Vacuum Steam Technology treated specimens had 0 failed bends whereas the atmospheric steamed specimens resulted in 39% failed bends. Vacuum Steam Technology treated specimens resulted in 17% less work to bend. The results clearly indicate that Vacuum Steam Technology is a superior technique for attaining a plastic deformable state prior to bending when beginning with low moisture content maple. Additional results included time to temperature, rate of moisture content change, final moisture contents, specific gravity influence. / Master of Science
|
182 |
An economic justification of using a small turbine rather than pressure reducing valves between the high pressure header and high pressure heating lines of V.P.I. Power PlantChatterjee, Anil Kumar 07 November 2012 (has links)
Generally it is believed that in a power station when there is a demand for process steam and also demand for heating, most of the auxiliaries of the plant should be arranged to be driven by steam rather than using electrical energy for them. This is, however, a general remark and a correct selection can be made only after a detailed study is made of all factors involved. The V. P. I. central heating and power plant works mainly as a heating station, generation of electrical energy, being a by-product. So this problem is completely different from the standpoint of a general power station. This station supplies heating steam to the college through two different pressure lines. One is the low pressure, and the other is the high pressure line. / Master of Science
|
183 |
A study of residual charge of condenserHickam, William M. January 1942 (has links)
For many years it has been known that the complete charging and discharging of a condenser with complex dielectric involved a time element. Particularly, it was noted that a condenser could be discharged to zero potential, allowed to stand for an interval of time and a discharge then secured from the condenser. In some cases even after months a discharge could be obtained. The accumulation of such a charge on a condenser is spoken of no residual charge or dielectric absorption.
The Lyden jar was used extensively in the early work on residual charge. Physicists such as Benjamin Franklin, Faraday, and Maxwell recognized this. In fact Maxwell gives us the first attempt ever made at a theoretical explanation of the phenomena of absorption.¹ Today this is the principal theory recognized in the Physics world for this phenomena.
It was not until the day of speech communication over long distances that a study of the dielectric was given considerable attention. Theories have been developed for the explanation of dielectric absorption, some of which will be mentioned later. Even today large inconsistencies are found to exist between theory and experiment in this field of work.
There are numerous factors upon which dielectric absorption depends. Some of these are, material or dielectric, previous history, charging potential, moisture content, air content, charge time, discharge time, recovery time, and temperature.
It is the purpose of this paper to present results of experiment and to state conclusions drawn from work on temperature effects on residual charge of a paraffin paper dielectric. Through the study which has been made of this phenomenon it is felt information has been gained which can be added to our now small understanding of absorption. / Master of Science
|
184 |
Investigation of Aerodynamic Profile Losses for a Low-Reaction Steam Turbine BladeGuilliams, Hunter Benjamin 27 January 2014 (has links)
This thesis presents the results of a linear cascade experiment performed on the mean-line and near-tip sections of a low-reaction steam turbine blade and compares them to CFD of the former. The purpose of these tests was the refinement of a proprietary empirical profile loss model. A review of the literature shows that experimental data on this type of blade is not openly available. The continued efficacy of empirical loss models to low-reaction steam turbine blades requires data from experiments such as the present study. Tests covered a range of incidence from -6 to +4 and exit Mach numbers from 0.4 to 0.6. Extensive static pressure taps on the blades allowed detailed examinations of blade loading. This loading was dissimilar to steam turbine blade loading in the open literature. A traversing five-hole probe measured conditions downstream of the blade row to enable the calculation of a total pressure loss coefficient. The area-averaged total pressure loss coefficient for both profiles was near 0.08 and was not sensitive to incidence or exit Mach number over the ranges tested. / Master of Science
|
185 |
Characterization of a Novel Biodegradable Material to Reduce Emission of AmmoniaAdjei, Thomas 29 April 2008 (has links)
A novel biodegradable ammonia control material was developed from steam exploded corn cob and its adsorption capacity was studied by packed column and titration method. The packed column studies showed that the maximum absorption capacities of the raw corn cob (RCC) and the steam exploded corn cob (SECC) were 10.45 mg NHB3B/gRCC and 59.80 mg NHB3B/gSECC respectively. However, the titration of the water slurries with a NHB4BOH showed that the capacity of the SECC was 14.4 times that of RCC. The large difference between the packed column (SECC/RCC = 5.7) and the slurry titration (SECC/RCC = 14.4) was probably because: (1) the initial ammonia reaction products blocked the pores of the SECC and reduced diffusion into the pore structure; (2) the ammonia gas flow rates were too high and therefore the gas did not penetrate the pores; (3) the gas contact time was below the equilibrium value; and (4) since interior pore surface area is usually larger than the external surface area of a particle, it appears the low column SECC/RCC ratio is due to reactions on the SECC particle surface whereas the slurry result was a combination of both.
Fourier Transform Infrared, FTIR spectroscopy was conducted on RCC, SECC, ammonia adsorbed on RCC and ammonia adsorbed on SECC in the range 4000–700 cmP-1P. The FTIR bands in the region between 1500 and 2000 cmPâ 1P showed a considerable difference between RCC and SECC. When SECC was treated with ammonia, the carboxylic functional group peak at 1700 cmP-1P was reduced and a new peak was observed at 1584 cmP-1P. The adsorption, desorption test and the heat of adsorption results suggested combined physisorption and chemisorption of ammonia on SECC but chemisorption was found to play an important role in ammonia removal. The BET specific surface area of RCC was 3.4 m2/g whilst that SECC was less than 1 m2/g. Although SECC had a low surface area compared with RCC its adsorption capacity was found to be greater than that of RCC meaning the adsorption process is chemically controlled. Also, the pore size distribution showed that RCC exhibited both macroporosity and mesoporosity whilst SECC showed only mesoporosity. It is interesting to note that upon steam exploding RCC, the macropores within RCC collapsed to form more mesopores in SECC. The high uptake of SECC was determined to be its small pore width compared to that RCC.
Simultaneous Differential Scanning Calorimetry, DSC and Thermal Gravimetric Analyzer, TGA, was used to determine the heat of adsorption of ammonia on SECC. The heat of adsorption of ammonia on SECC was 33.00 kJ per mole of NHB3B. This study shows that SECC could be potentially used to remove NHB3B from various emission sources. / Master of Science
|
186 |
An economic study of a proposed high-pressure boiler and turbo-generator unit in the central heating and power plant of the Virginia Polytechnic InstituteAnderson, Victor Fontaine 26 April 2010 (has links)
Through this thesis evidence will be collected to determine the need of a proposed turbo-generator and boiler unit adequate for future requirements of the campus and community of Blacksburg. / Master of Science
|
187 |
Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulationMago, Alonso Luis 16 August 2006 (has links)
A global steady increase of energy consumption coupled with the decline of conventional oil resources points to a more aggressive exploitation of heavy oil. Heavy oil is a major source of energy in this century with a worldwide base reserve exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential in performing reliable modeling studies of fluid flow in the reservoir. We simulated cyclic steam injections on the highly viscous Hamaca oil, with a viscosity of over 10,000 cp at ambient temperature, and the production was drastically impacted by up to an order of magnitude when using improper mixing rules to describe the oil viscosity. This thesis demonstrates the importance of these mixing rules and alerts reservoir engineers to the significance of using different options simulators have built in their platforms to describe the viscosity of heavy oils. Log linear and power mixing rules do not provide enough flexibility to describe the viscosity of extra heavy oil with temperature. A recently implemented mixing rule in a commercial simulator has been studied providing satisfactory results. However, the methodology requires substantial interventions, and cannot be automatically updated. We provide guidelines to improve it and suggest more flexible mixing rules that could easily be implemented in commercial simulators. We also provide a methodology to determine the adequate time for each one of the periods in cyclic steam injection: injection, soaking and production. There is a lot of speculation in this matter and one of the objectives of this thesis is to better understand and provide guidelines to optimize oil production using proper lengths in each one of these periods. We have found that the production and injection periods should be similar in time length. Nevertheless, the production period should not be less than the injection period. On the other hand, the soaking period should be as short as possible because it is unproductive time in terms of field oil production for the well and therefore it translates into a negative cash flow for a company.
|
188 |
Integrated approaches to the optimization of process-utility systemsAl-Azri, Nasser Ahmed 15 May 2009 (has links)
The goal of this work is to develop a conceptual framework and computational tools for
the optimization of utility systems in the process industries. The emphasis is devoted to
the development of systematic design techniques aimed at identifying modifications to
the process and the associated utility-systems to jointly optimize the process and the
utility system. The following contributions describe the specific results of this work:
• Development of shortcut methods for modeling and optimizing steam systems
and basic thermodynamic cycles with the objective of using these methods in the
optimization of combined heat and power. To enable efficient mathematical
programming formulations, simple yet accurate correlations have been developed
for the thermodynamic properties of steam in the utility system.
• Optimization of multi-level steam system for combined process requirements and
power cogeneration. A general procedure is developed to determine rigorous
cogeneration targets and the optimal configuration of the system with the
associated design and operating variables. • Graph theory methods are also used to optimize the pipeline layout in the plant
for the distributing the utilities.
• Finally, because of the nonconvex nature of much of the developed optimization
formulations, a global optimization method has also been suggested by using
interval analysis and simulated annealing.
The techniques proposed in this work are compared to previous works and their
applicabilities are presented in case studies. These techniques outperform previously
suggested ones in terms of the accuracy, computational efficiency and/or optimality.
|
189 |
Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulationMago, Alonso Luis 16 August 2006 (has links)
A global steady increase of energy consumption coupled with the decline of conventional oil resources points to a more aggressive exploitation of heavy oil. Heavy oil is a major source of energy in this century with a worldwide base reserve exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential in performing reliable modeling studies of fluid flow in the reservoir. We simulated cyclic steam injections on the highly viscous Hamaca oil, with a viscosity of over 10,000 cp at ambient temperature, and the production was drastically impacted by up to an order of magnitude when using improper mixing rules to describe the oil viscosity. This thesis demonstrates the importance of these mixing rules and alerts reservoir engineers to the significance of using different options simulators have built in their platforms to describe the viscosity of heavy oils. Log linear and power mixing rules do not provide enough flexibility to describe the viscosity of extra heavy oil with temperature. A recently implemented mixing rule in a commercial simulator has been studied providing satisfactory results. However, the methodology requires substantial interventions, and cannot be automatically updated. We provide guidelines to improve it and suggest more flexible mixing rules that could easily be implemented in commercial simulators. We also provide a methodology to determine the adequate time for each one of the periods in cyclic steam injection: injection, soaking and production. There is a lot of speculation in this matter and one of the objectives of this thesis is to better understand and provide guidelines to optimize oil production using proper lengths in each one of these periods. We have found that the production and injection periods should be similar in time length. Nevertheless, the production period should not be less than the injection period. On the other hand, the soaking period should be as short as possible because it is unproductive time in terms of field oil production for the well and therefore it translates into a negative cash flow for a company.
|
190 |
Redesign of Steam StrainerJannesson, Ann January 2008 (has links)
<p>This thesis was done at Siemens Industrial Turbomachinery AB in Finspång.</p><p>Placed in the inlet to a steam turbine is a filter, a steam strainer, which separates particles and larger objects from the steam. These particles and objects will cause solid particle erosion in the actual turbine if they pass by. The strainer is exposed to large pressure drops when clogged, i.e., static loads which require a good creep resistance in the material. The temperature of the steam in the turbines is increased in order to deliver more energy; today’s turbines are dimensioned for almost 600°C. The material in parameters, such as the strainer, should also be adjusted to the higher temperatures. Today’s temperature is suspected to be the cause of damage in the strainer because the present material might get brittle at higher temperatures.</p><p>The purpose of the thesis is to find a new material for the strainers and also to find a new concept for how to manufacture them. There are nine sizes of steam strainers but only five of them are exposed to the highest temperatures and pressure drops, which make only these five interesting to examine in this thesis.</p><p>The concepts were chosen according to the method of Ulf Liedholm (1999), Systematic Concept Development. The thesis did not end up with only one concept because not all possible methods were tested but the suggestions are all based on a strainer built out of membranes as before. The discussed methods to join the membranes are EB-welding, laser welding and brazing.</p><p>An investigation to find if it was possible to improve the strength of the strainer by simple design changes and a calculation of what percentage of clogging the strainer would hold for was also done.</p><p>The chosen material was a creep resistant, alloy special steel. Three suggestions on concepts were presented. The improvements in strength from simple changes in design were too small and too costly but are enclosed as an appendix in this report. Calculations on the strength were done without regard taken to fatigue caused by possible vibrations, so-called high cycle fatigue.</p><p>What would be interesting to do as a future work based on this thesis is, of course, to test the three manufacturing methods and evaluate them thoroughly but also to discuss other ways of improving the strength through design changes. These should be done regarding the flow. Also high cycle fatigue should be considered.</p> / <p>Examensarbetet utfördes i Finspång på Siemens Industrial Turbomachinery AB.</p><p>I inloppet till en ångturbin sitter ett filter, en ångsil, som silar bort partiklar och större föremål från ångan. Dessa partiklar och föremål skadar turbinen genom erosion om de tillåts passera. Ångsilen i sig utsätts för stora tryckfall när den blir igensatt, vilket kräver god krypresistans i materialet. För att kunna leverera allt mer energi utvecklas ångturbiner som kan arbeta vid allt högre ångtemperaturer. De som konstrueras idag dimensioneras för närmare 600 °C. Då måste även materialet i detaljer, som silen, anpassas. De temperaturer som används idag misstänks vara en orsak till skador på silarna eftersom nuvarande material kan bli sprött då temperaturen stiger.</p><p>Syftet med arbetet är att välja ett nytt material till ångsilarna samt att finna nya koncept för hur ångsilen kan tillverkas. Nio storlekar på ångsilar finns men bara fem av dessa används vid högsta temperatur och tryck och därför har enbart dessa fem använts vid beräkningar i detta examensarbete.</p><p>Koncept valdes enligt Liedholms (1999) metod, Systematisk Konceptutveckling. Istället för ett slutligt koncept lämnas istället tre förslag. Detta görs då de olika förslagen inte har testats ordentligt. Samtliga tre förslag är baserade på den typen av sil uppbyggd av membran som används idag men med nya metoder att sammanfoga membranen med. Metoderna är EB-svetsning, lasersvetsning och vakuumlödning.</p><p>En undersökning om det var ekonomiskt rimligt att förbättra hållfastheten genom enkla designändringar samt en beräkning över hur stor igensättning silen klarar gjordes.</p><p>Materialet som valdes var ett krypresistant, legerat specialstål. De tre förslagen på koncept lades fram. Designändringarna gav inte det resultat som det hade hoppats på och var framförallt för dyra att genomföra. Hållfasthetsberäkningar gjordes utan hänsyn till utmattning på grund av eventuella vibrationer, så kallad högcykelutmattning.</p><p>Som framtida arbete med detta examensarbete som språngbräda rekommenderas i första hand att testa de föreslagna metoderna för sammanfogning av membranen men även djupare diskussioner kring hur hållfastheten skulle kunna förbättras genom designförändringar borde tas. Dessa skulle kunna genomföras med avseende på flödet. Även högcykelutmattning, HCF, borde undersökas.</p>
|
Page generated in 0.0459 seconds