1 |
Liquid phase sintering of austenitic stainless steel 316L powder using tin and nickelTalamantes-Silva, Jose January 1999 (has links)
No description available.
|
2 |
Predicting the response of powder metallurgy steel components to heat treatmentWarke, Virendra S. January 2008 (has links)
Dissertation (Ph.D.)--Worcester Polytechnic Institute. / Keywords: Heat Treatment; Powder Metallurgy; Phase Transformations; Finite Element Modeling Includes bibliographical references.
|
3 |
Carbon and Oxygen reduction during vacuum annealing of stainless steel powderMallipeddi, Dinesh January 2012 (has links)
Stainless steel family grades are very famous for their combined corrosion resistance and high mechanical properties. These properties can be improved further by decreasing the content of impurities like carbon and oxygen. The main purpose of this research work is to study the possibility of stainless steel powder decarburization by vacuum annealing. The influence of different process parameters like treatment time, temperature, fraction size and depth of the powder layer on the decarburization process was analyzed. The investigation results showed that it is possible to achieve extra low values of carbon and oxygen in steel powder by processing it with optimum process parameters.
|
4 |
Characterization of a newly developed martensitic stainless steel powder for Laser and PTA claddingTibblin, Fritjof January 2015 (has links)
A newly developed martensitic stainless steel powder, called “powder A”, designed for surface coating with laser cladding and PTA cladding was characterized. The purpose with powder A is to achieve both good corrosion resistance and wear resistance in a stainless steel grade. The investigation of powder A was divided into cladding characterization, microstructural investigation and a property comparison to existing grades 316 HSi and 431 L. Powder A was successfully deposited with laser cladding, exhibiting a wide process window, and PTA cladding. In both cases no preheating was required and no cracks were formed. The microstructure examination indicates that powder A has a martensitic structure possibly containing small amounts of ferrite in the grain boundaries. Thermodynamic calculations in computer software Thermo-Calc 4.1 supported this theory. The microstructure of powder A proved to be very stable over a wide range of cladding parameters. Powder A was significantly harder than 316 HSi and 431 L and had better corrosion resistance than 431 L in a chloride environment. Powder A had similar corrosion properties as 316 HSi in the experiments made .The wear performance of the powder A coatings was similar to 431 L. This was surprising since the hardness of the powder A coatings is significantly higher compared to 431 L.
|
5 |
Increased build rate by laser powder bed fusion of SSAB steel powderDaly, Colin January 2023 (has links)
SSAB has built a pilot gas atomization facility looking to expand their expertise of steel into the metal powder and additive manufacturing industry. Laser powder bed fusion is an additive manufacturing method that melts and fuse metal feedstock powder together layer by layer using a high intensity laser. The complex process requires optimization in order to be competitive. The process parameters laser power, scan speed, hatch distance and layer thickness largely govern the build rate and total production time. To increase the build rate, two iterations of test cubes with unique parameters sets were experimentally printed. Evaluation of relative density, porosity, microstructure, hardness and mechanical properties was performed. All results were compared to a reference parameter set previously studied. A candidate parameter set successfully increased the build rate by 116% while maintaining satisfactory material properties.
|
6 |
Physico-chimie des échanges matrice/renfort dans un matériau composite acier/TiC / Chemicophysical exchanges in a steel/TiC metal matrix compositeCourleux, Alice 13 July 2011 (has links)
Un composite à matrice métallique et à renfort particulaire de carbure de titane (25vol.%) produit par la société Mecachrome par métallurgie des poudres est l’objet de cette étude. Le process industriel suit trois étapes : broyage à haute énergie des poudres d’acier et de carbure de titane (TiC) ; consolidation de la poudre composite par extrusion ou consolidation isostatique à chaud (HIP) ; traitements thermiques d’austénitisation. Les principales évolutions concernent la taille de particule, la taille de cristallite, le paramètre de maille et la composition chimique du renfort TiC. Dans cette étude, nous nous sommes concentrés uniquement sur l’évolution du renfort (les évolutions de la matrice sont développées dans le travail de M. Mourot). Afin de caractériser les particules de TiC à chaque étape du process, nous avons mis en place une procédure de dissolution chimique sélective de la matrice acier. Le TiC ainsi « extrait » de la matrice a ensuite été caractérisé de façon méthodique par microscopie électronique à balayage (MEB), microscopie électronique en transmission (MET), diffraction des rayons X (DRX) et analyse chimique élémentaire. Ces techniques ont permis de révéler des changements importants indiquant des interactions physico-chimiques durant les étapes d’élaboration du composite. Ces évolutions du renfort et l’étude thermodynamique des systèmes C-Fe-Ti et C-Fe-O-Ti ont permis de proposer les mécanismes réactionnels à prendre en compte lors de l’élaboration du composite acier/TiC / Steel metal matrix composites reinforced with titanium carbide particles (25 vol% ) can be industrially produced by a solid-state process including three main steps: mechanical alloying by high energy milling of steel and titanium carbide powders; consolidation of the powder mixture thus obtained by hot forging, hot extrusion or hot pressing at 1050-1250°C; heat treatment of the resulting composite material. During each of the three steps, the TiC reinforcing particles are submitted to severe mechanical shocks or stresses. Moreover, they can chemically react with impurities of the gas phase during milling or with the steel matrix during consolidation or further heat treatment. As a result, changes are likely to occur in the grain size, crystallite size, morphology and composition of the particles. The aim of this thesis was to point out and characterize these changes. For that purpose, a procedure was developed to selectively dissolve the metal matrix and extract the TiC particles from the starting powder mixture, from the consolidated composite material and from further heat-treated composite samples. The extracted TiC particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), chemical microanalysis (CMA) and X-ray diffraction (XRD). This revealed important changes indicative of the physical and chemical interaction phenomena that successively proceed during processing of the steel/TiC composite
|
7 |
Experiment and simulation of micro injection molding and microwave sintering / Expérimentation et simulation de micro-moulage par injection et frittage par micro-ondesShi, Jianjun 05 May 2014 (has links)
Procédé de moulage par injection de poudres est constitué de quatre étapes principales: la préparation des matières premières, moulage par injection, le déliantage et le frittage. Cette thèse présente les recherches sur deux aspects principaux: la micro-injection et frittage par micro -ondes. Les contributions principaux peuvent être conclues dans les quatre aspects suivants: Modification et complément de l'algorithme précédent pour la simulation du procédé de moulage par injection; L'évaluation et la mise en œuvre de l'effet de tension de surface en simulation pour micro-injection; Micro-ondes expériences de frittage de compacts basés sur l'acier inoxydable 17-4PH; Réalisation de la simulation de frittage à micro-ondes avec couplage de la multi-physique, y compris le chauffage à micro-ondes classique, le transfert de chaleur, et le supplément de modèle pour la densification de frittage de la poudre compacté / Powder Injection molding process consists off our main stages: feedstock preparation, injection molding, debinding and sintering. The thesis presents the research on two main aspects: micro injectionmolding and microwave sintering. The main contributions can be concluded in thefollowing four aspects: Modification and supplement of previous algorithm for the simulation ofinjection molding process; Evaluation and implementation of surface tension effect in simulation for micro injection; Microwave sintering experiments of compacts based on 17-4PH stainles ssteel; Realization of the microwave sintering simulation with the coupling of multi-physics,including the classic microwave heating, heat transfer, and the supplement of model for sintering densification of powder impacts
|
8 |
Comportamento da adi??o do carbeto de ni?bio (nBC) na matriz met?lica do a?o ferr?tico 15kH2mfa / Behavior of adition of niobium carbide (nBc) in metallic matrix of ferritic steel 15kH2mfaSilva J?nior, Jos? Ferreira da 01 November 2012 (has links)
Made available in DSpace on 2014-12-17T14:07:10Z (GMT). No. of bitstreams: 1
JoseFSJ_TESE.pdf: 4970258 bytes, checksum: fcd6ec64fc7d0cdced502c9b8b4dd5f9 (MD5)
Previous issue date: 2012-11-01 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines
for energy generation, pressure vessels, nuclear reactors or applications where the range of
temperature that the material works is between 250 to 450?C. To improve the properties of
these steels increasing the service temperature and the thermal stability is add a second
particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some
chemical elements. On this way, this work aim to study the effect of addition of 3wt% of
niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route
employed to produce this metallic matrix composite. Two different milling conditions were
performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of
15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out
during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150
and 1250?C during 60 minutes. After sintering the samples were normalized at 950?C per 3
minutes followed by air cooling to obtain a desired microstructure. Results show that the
addition of niobium carbide helps to mill faster the particles during the milling when
compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter
increasing the density of the samples reaching a maximum density of 7.86g/cm?, better than
the melted steel as received that was 7,81g/cm?. In spite this good densification, after
normalizing, the niobium carbide don t contributed to increase the microhardness. The best
microhardness obtained to the steel with niobium carbide was 156HV and to pure
15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel
a pearlitic structure was formed, and the steel without niobium carbide submitted to the same
conditions reached a bainitic structure / O a?o 15Kh2MFA, da fam?lia dos a?os CrMoV, pode ser utilizado em turbinas para
gera??o de energia, vasos de press?o, reatores nuclear ou aplica??es, onde o material ?
submetido a temperaturas de servi?o entre 250 e 450?C. Uma forma de melhorar as
propriedades do a?o, para que ele trabalhe a temperaturas mais altas ou que se torne mais
est?vel ? adicionar part?culas de segunda fase na sua matriz. Estas part?culas podem estar na
forma de ?xidos, carbetos, nitretos ou at? mesmo em solu??o s?lida quando alguns elementos
qu?micos s?o adicionados ao material. Neste contexto, este trabalho objetiva estudar o efeito
da adi??o de 3% de carbeto de ni?bio na matriz met?lica do a?o 15Kh2MFA. Para isto a
metalurgia do p? foi a rota empregada para a produ??o deste comp?sito de matriz met?lica.
Para tal, duas moagens distintas foram realizadas. A primeira com o a?o 15Kh2MFA e a
segunda com o a?o 15Kh2MFA com adi??o de 3% de carbeto de ni?bio. A moagem de alta
energia foi realizada durante 5 horas. Em seguida, os dois p?s produzidos foram sinterizados
em um forno a v?cuo (10-4torr) a temperaturas de 1150?C e 1250?C durante 60 minutos. Ap?s
a sinteriza??o as amostras foram submetidas ao tratamento t?rmico de normaliza??o a 950?C.
Os resultados mostraram que a adi??o do carbeto de ni?bio ajuda o processo de cominui??o
das part?culas, quando comparado com o a?o sem o carbeto de ni?bio. O carbeto de ni?bio
tem um papel fundamental na densifica??o das amostras durante a sinteriza??o, levando a
densidade 7,86g/cm?, que ? maior do que a densidade do a?o fundido recebido que era de
7,81g/cm?. Apesar desta boa densifica??o, ap?s a normaliza??o, o NbC n?o contribuiu de
forma significativa para aumento da dureza, onde a melhor dureza obtida para o a?o com NbC
foi de 156HV e para o a?o puro foi de 212HV. Isto se deve ao fato de que, quando o NbC foi
adicionado ao a?o, formou-se uma estrutura perl?tica, enquanto que, com o a?o sem adi??o de
NbC, submetido as mesmas condi??es, obteve-se uma estrutura bain?tica
|
9 |
Herstellung und Eigenschaften neuartiger, metallischer PolyederzellstrukturenReinfried, Matthias 01 November 2010 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es, die technologischen Schritte für die Herstellung eines geschlossenzelligen metallischen Werkstoffs aus Stahl zu untersuchen. Das Eigenschaftsbild dieses neuartigen zellular aufgebauten Werkstoffs soll umfassend beschrieben und mit bereits existierenden Werkstoffkonzepten verglichen werden.
Die Grundidee für die Herstellung einer geschlossenzelligen Struktur bildet die Kombination der Technologie zur Herstellung von metallischen Hohlkugeln und Hohlkugelstrukturen mit dem Herstellungsprozesses für Partikelschäume aus expandierbarem Polystyrol (EPS).
Dazu ist es notwendig zunächst Grünkugeln herzustellen, wie bei der Technologie der Hohlkugeln, wobei jedoch ein treibmittelhaltiges EPS zum Einsatz kommt, das mit einer Beschichtung aus Metallpulver und Binder versehen wird. Anschließend sollen die Grünkugeln in einer geschlossenen Form zum expandieren gebracht werden. Dazu wird, wie bei der Partikelschaumtechnologie für Teile aus expandierbarem Polystyrol (EPS), Wasserdampf verwendet. Der durch den Temperaturanstieg und das Treibmittel der EPS-Partikel in den Grünkugeln entstehende Innendruck führt zum Aufschäumen und zur Expansion jeder Grünkugel. In der Folge ändert jede Kugel ihre Form so lange, bis sie mit allen Nachbarn einen flächigen, stabilen Kontakt bildet. Der auf diesem Weg erzeugte Grünkörper kann dann entformt und getrocknet werden. Wie bei der Hohlkugeltechnologie muss nachträglich das EPS durch die thermische Entbinderung entfernt und das Metallpulverskelett zu dichten Zellwänden gesintert werden.
Für die Umsetzung dieser Idee ist es erforderlich, ein geeignetes Bindersystem für die Metallpulver-Binder-Beschichtung zu entwickeln, welches die Formänderung während des Schäumprozess unbeschädigt übersteht, sowie den Schäumprozess entsprechend anzupassen.
Damit wäre die Möglichkeit gegeben, einen geschlossenzelligen metallischen Werkstoff herzustellen. Er würde die Vorteile einer geschlossenzelligen Struktur und die Materialvielfalt der pulvermetallurgischen Technologie der Hohlkugelherstellung (insbesondere in Bezug auf Stähle und andere höherschmelzende Werkstoffe) miteinander verbinden.
In Vorversuchen wurde bereits gezeigt, dass die der Arbeit zugrunde liegenden Ideen realisierbar sind. Mit der vorliegenden Arbeit wird jedoch erstmals die vollständige Kette der technologischen Schritte hinsichtlich der relevanten Einflussgrößen untersucht, wobei großen Wert auf eine Umsetzbarkeit auch im industriellen Maßstab gelegt wird.
Für den praktischen Einsatz des geschlossenzelligen Metallschaums sind seine mechanischen Kennwerte, sowie die sie beeinflussenden Herstellungsparameter von grundlegender Bedeutung. Dazu soll die Charakterisierung der zellularen Struktur und des Gefüges des Zellwandmaterials erfolgen. Hauptsächlich soll das Verformungsverhalten mit Hilfe von Druckversuchen untersucht werden. Die Festigkeitskennwerte, das Energieabsorptionsvermögen und die Steifigkeit des zellularen Werkstoffes sind weitere zu untersuchende Kenngrößen. Anhand der Ergebnisse wird eine Einordnung gegenüber dem Stand der Technik der Metallschäume vorgenommen.
|
10 |
Herstellung und Eigenschaften neuartiger, metallischer PolyederzellstrukturenReinfried, Matthias 11 May 2010 (has links)
Das Ziel der vorliegenden Arbeit ist es, die technologischen Schritte für die Herstellung eines geschlossenzelligen metallischen Werkstoffs aus Stahl zu untersuchen. Das Eigenschaftsbild dieses neuartigen zellular aufgebauten Werkstoffs soll umfassend beschrieben und mit bereits existierenden Werkstoffkonzepten verglichen werden.
Die Grundidee für die Herstellung einer geschlossenzelligen Struktur bildet die Kombination der Technologie zur Herstellung von metallischen Hohlkugeln und Hohlkugelstrukturen mit dem Herstellungsprozesses für Partikelschäume aus expandierbarem Polystyrol (EPS).
Dazu ist es notwendig zunächst Grünkugeln herzustellen, wie bei der Technologie der Hohlkugeln, wobei jedoch ein treibmittelhaltiges EPS zum Einsatz kommt, das mit einer Beschichtung aus Metallpulver und Binder versehen wird. Anschließend sollen die Grünkugeln in einer geschlossenen Form zum expandieren gebracht werden. Dazu wird, wie bei der Partikelschaumtechnologie für Teile aus expandierbarem Polystyrol (EPS), Wasserdampf verwendet. Der durch den Temperaturanstieg und das Treibmittel der EPS-Partikel in den Grünkugeln entstehende Innendruck führt zum Aufschäumen und zur Expansion jeder Grünkugel. In der Folge ändert jede Kugel ihre Form so lange, bis sie mit allen Nachbarn einen flächigen, stabilen Kontakt bildet. Der auf diesem Weg erzeugte Grünkörper kann dann entformt und getrocknet werden. Wie bei der Hohlkugeltechnologie muss nachträglich das EPS durch die thermische Entbinderung entfernt und das Metallpulverskelett zu dichten Zellwänden gesintert werden.
Für die Umsetzung dieser Idee ist es erforderlich, ein geeignetes Bindersystem für die Metallpulver-Binder-Beschichtung zu entwickeln, welches die Formänderung während des Schäumprozess unbeschädigt übersteht, sowie den Schäumprozess entsprechend anzupassen.
Damit wäre die Möglichkeit gegeben, einen geschlossenzelligen metallischen Werkstoff herzustellen. Er würde die Vorteile einer geschlossenzelligen Struktur und die Materialvielfalt der pulvermetallurgischen Technologie der Hohlkugelherstellung (insbesondere in Bezug auf Stähle und andere höherschmelzende Werkstoffe) miteinander verbinden.
In Vorversuchen wurde bereits gezeigt, dass die der Arbeit zugrunde liegenden Ideen realisierbar sind. Mit der vorliegenden Arbeit wird jedoch erstmals die vollständige Kette der technologischen Schritte hinsichtlich der relevanten Einflussgrößen untersucht, wobei großen Wert auf eine Umsetzbarkeit auch im industriellen Maßstab gelegt wird.
Für den praktischen Einsatz des geschlossenzelligen Metallschaums sind seine mechanischen Kennwerte, sowie die sie beeinflussenden Herstellungsparameter von grundlegender Bedeutung. Dazu soll die Charakterisierung der zellularen Struktur und des Gefüges des Zellwandmaterials erfolgen. Hauptsächlich soll das Verformungsverhalten mit Hilfe von Druckversuchen untersucht werden. Die Festigkeitskennwerte, das Energieabsorptionsvermögen und die Steifigkeit des zellularen Werkstoffes sind weitere zu untersuchende Kenngrößen. Anhand der Ergebnisse wird eine Einordnung gegenüber dem Stand der Technik der Metallschäume vorgenommen.:1 Ziel der Arbeit 1
2 Einführung – zellulare Materialien 3
2.1 Herstellung zellularer metallischer Werkstoffe 4
2.2 Pulvermetallurgische Verfahren zur Herstellung von Schäumen aus höherschmelzenden Werkstoffen (Stahl, Titan, …) 8
2.2.1 Pressen von Metallpulver-Treibmittel-Mischungen 8
2.2.2 Pressen von Metallpulver-Platzhalter-Mischungen 9
2.2.3 Schaumherstellung mit Metallpulver-Polymer-Mischungen 9
2.2.4 Beschichtung von Trägerstrukturen 10
2.2.5 Technologie zur Herstellung von Hohlkugelstrukturen 11
2.3 Eigenschaften zellularer metallischer Werkstoffe 13
2.4 Die Struktur zellularer metallischer Werkstoffe 14
2.4.1 Mikrostruktur 15
2.4.2 Mesostruktur 16
2.4.3 Makrostruktur 16
2.5 Mechanische Eigenschaften 17
2.5.1 Einleitung 17
2.5.2 Mechanische Prüfung 19
2.5.3 Verformung und Versagen 20
2.5.4 E-Modul und Steifigkeit 22
2.5.4.1 Theoretische Betrachtung 22
2.5.4.2 Praktische Bestimmung der Steifigkeit 24
2.5.5 Einfluss der Strukturebenen auf das mechanische Verhalten 25
2.5.5.1 Makroskopische Parameter 26
2.5.5.2 Einfluss der mikroskopischen Parameter 27
2.5.5.3 Einfluss der mesoskopischen Parameter 28
2.6 Zusammenfassung 31
3 Konzept zur Herstellung eines geschlossenzelligen metallischen Werkstoffs 33
4 Nachweis der Herstellbarkeit einer geschlossenzelligen Struktur 37
4.1 Experimentelle Arbeiten 37
4.1.1 Verwendete Materialien 37
4.1.2 Beschichtung 38
4.1.3 Formgebung - Ausschäumen 38
4.1.4 Wärmebehandlung 39
4.2 Ergebnisse 39
4.3 Zusammenfassung 40
5 Formschäumen 43
5.1 Formteilherstellung aus expandierbarem Polystyrol (EPS) 43
5.2 Überlegungen zum Formschäumen von Grünkugeln 44
5.3 Anforderungen an das Bindersystem beim Formschäumen 44
5.4 Entwicklung des Versuchsstandes 46
5.4.1 Konstruktion des Formwerkzeuges 46
5.4.2 Dampfbereitstellung 48
6 Verfahrensexperimente 49
6.1 Ausgangsmaterialien 49
6.1.1 Metallpulver 49
6.1.2 Expandierbares Polystyrol (EPS) 49
6.1.3 Binder 50
6.2 Grünkugelherstellung 51
6.2.1 Substrataufbereitung 51
6.2.2 Suspensionen 52
6.2.3 Grünkugelherstellung – Beschichtung des EPS 53
6.2.4 Charakterisierung der EPS-Partikel und Grünkugeln 54
6.3 Formschäumen 55
6.3.1 Formschäumen von unbeschichtetem EPS 55
6.3.1.1 Schäumen mit dem Dampfkessel 55
6.3.1.2 Schäumen mit dem Dampferzeuger 56
6.3.1.3 Schäumkraftmessung an EPS- Formkörpern 56
6.3.2 Formkörperherstellung – Formschäumen mit Grünkugeln 57
6.3.2.1 Formschäumen mit Dampfkessel 58
6.3.2.2 Formschäumen mit Dampferzeuger 58
6.4 Untersuchungen an ausgewählten Metallpulver-Binder-Folien 58
6.4.1 Herstellen der Folien durch das Foliengießen 58
6.4.2 Zugversuche an Folien 59
7 Ergebnisse der Formgebung und Grünkörperherstellung 61
7.1 Formschäumen mit EPS-Partikeln 61
7.1.1 Vorgeschäumtes EPS 61
7.1.2 Formkörper aus unbeschichtetem EPS 62
7.1.3 Schäumkraftmessung an EPS-Formkörpern 63
7.1.4 Anzahl der Kontaktflächen geschäumter Partikel 65
7.2 Formschäumen mit Grünkugeln 67
7.2.1 Grünkugelherstellung 67
7.2.2 Formkörperherstellung 71
7.2.2.1 Beurteilung der Metallpulver-Binder-Schichten 74
7.2.2.2 Schäumen mit Dampfkessel 75
7.2.2.3 Schäumen mit Dampferzeuger 76
7.2.2.4 Vergleich der Metallpulver-Binder-Schichten 76
7.2.3 Formkörperherstellung mit Dampferzeuger 77
7.2.3.1 Einfluss des verwendeten Dampfdrucks 78
7.2.3.2 Einfluss von Schäumzeit und Bedampfungszeit 80
7.2.3.3 Schäumkraftmessung bei der Grünkörperherstellung 82
7.3 Metallpulver-Binder-Folien (Grünfolien) 83
7.3.1 Dicke und Dichte der Grünfolien 83
7.3.2 Mechanische Eigenschaften der Folien 83
7.3.2.1 Versuchsergebnisse der „trockenen“ Grünfolien 84
7.3.2.2 Versuchsergebnisse der „nassen“ Grünfolien 84
8 Diskussion der Herstellungsuntersuchungen 87
8.1 Formschäumen 87
8.1.1 Einfluss der Metallpulver-Binder-Schicht auf den Schäumvorgang 87
8.1.2 Modifikation der Binderzusammensetzung 87
8.1.3 Schäumkraftmessungen 88
8.2 Zusammenfassung des Formschäumprozesses 89
8.3 Theoretische Betrachtungen zur Bildung der polyederförmigen Zellen 90
8.3.1 Grundlegende Annahmen 90
8.3.2 Tangentialspannung der Kugelschicht 92
8.3.3 Vergleich zu den Ergebnissen der Folienzugversuche 92
8.3.4 Geometrische Verhältnisse spezieller Polyeder und ihrer Inkugel 93
8.3.5 Vergleich zu den Ergebnissen der Folienzugversuche 97
8.4 Zusammenfassung der Herstellungstechnologie von Grünformteilen 98
9 Untersuchung der mechanischen Eigenschaften 103
9.1 Herstellen der Proben 103
9.2 Wärmebehandlung 103
9.2.1 Probenvorbereitung 103
9.2.2 Entbinderung 104
9.2.3 Sintern 104
9.3 Methoden der Charakterisierung 105
9.4 Druckversuche an gesinterten Formkörpern 107
9.4.1 Probenvorbereitung für den Druckversuch 107
9.4.2 Durchführung der Druckversuche 107
9.4.3 Auswertung der Druckversuche 109
9.5 Zugversuche an Folien 110
10 Ergebnisse der mechanischen Prüfungen 111
10.1 Wärmebehandlung 111
10.1.1 Ergebnisse der Sinterung 111
10.1.2 Kohlenstoffgehalte nach der Entbinderung und Sinterung 112
10.2 Metallographie 113
10.3 Ergebnisse der Druckversuche 117
10.3.1 Druckspannung und Stauchung 117
10.3.2 Darstellung der Verformung 118
10.3.3 Probenfestigkeit, Probensteifigkeit und Energieabsorption 119
10.4 Ergebnisse der Folienprüfung 123
10.4.1 Sinterergebnisse (Wärmebehandlung und Metallographie) 123
10.4.2 Ergebnisse der Zugversuche 124
11 Diskussion der mechanischen Prüfungen 125
11.1 Einfluss des Gefüges auf die mechanischen Eigenschaften 126
11.2 Einfluss von Herstellungsparametern auf die mechanischen
Eigenschaften 127
11.2.1 Primäre Herstellungsparameter 127
11.2.2 Sekundäre Herstellungsparameter 129
11.2.3 Einfluss der Zwickelform auf die lokale
Spannungsverteilung im Zwickelbereich 136
11.2.4 Einfluss der Probenfläche 140
11.3 Elastisches und plastisches Deformationsverhalten der Proben im Druckversuch 142
11.3.1 Elastischer Bereich 144
11.3.2 Elastisch-plastischer Übergangsbereich 149
11.3.3 Plateaubereich 151
11.3.4 Lokale Maxima im Plateaubereich der
Druckspannung-Stauchung-Kurve 153
11.4 Zusammenfassung zu den mechanischen Eigenschaften und
Einordnung der Ergebnisse 155
12 Zusammenfassung und Ausblick 161
12.1 Zusammenfassung 161
12.2 Ausblick 166
13 Literaturverzeichnis 171
14 Anhang 185
14.1 Abbildungen und Tabellen 185
14.2 Verzeichnis der Abbildungen 200
14.3 Verzeichnis der Tabellen 208
14.4 Verzeichnis der Abkürzungen und Symbole 211
Danksagung 217
Versicherung 219
Lebenslauf 221
|
Page generated in 0.088 seconds