• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain / Analyse de variance et échantillonnage pour l'intégration Monte Carlo sur la sphère

Singh, Gurprit 08 September 2015 (has links)
Cette thèse introduit un cadre théorique pour l'étude de différents schémas d'échantillonnage dans un domaine sphérique, et de leurs effets sur le calcul d'intégrales pour l'illumination globale. Le calcul de l'illumination (du transport lumineux) est un composant majeur de la synthèse d'images réalistes, qui se traduit par l'évaluation d'intégrales multidimensionnelles. Les schémas d'intégration numériques de type Monte-Carlo sont utilisés intensivement pour le calcul de telles intégrales. L'un des aspects majeurs de tout schéma d'intégration numérique est l'échantillonnage. En effet, la façon dont les échantillons sont distribués dans le domaine d'intégration peut fortement affecter le résultat final. Par exemple, pour la synthèse d'images, les effets liés aux différents schémas d'échantillonnage apparaissent sous la forme d'artéfacts structurés ou, au contrire, de bruit non structuré. Dans de nombreuses situations, des résultats complètement faux (biaisés) peuvent être obtenus à cause du schéma d'échantillonnage utilisé pour réaliser l'intégration. La distribution d'un échantillonnage peut être caractérisée à l'aide de son spectre de Fourier. Des schémas d'échantillonnage peuvent être générés à partir d'un spectre de puissance dans le domaine de Fourier. Cette technique peut être utilisée pour améliorer l'erreur d'intégration, car un tel contrôle spectral permet d'adapter le schéma d'échantillonnage au spectre de Fourier de l'intégrande. Il n'existe cependant pas de relation directe entre l'erreur dans l'intégration par méthode de Monte-Carlo et le spectre de puissance de la distribution des échantillons. Dans ces travaux, nous proposons une formulation de la variance qui établit un lien direct entre la variance d'une méthode de Monte-Carlo, les spectres de puissance du schéma d'échantillonnage ainsi que de l'intégrande. Pour obtenir notre formulation de la variance, nous utilisons la notion d'homogénéité de la distribution des échantillons qui permet d'exprimer l'erreur de l'intégration par une méthode de Monte-Carlo uniquement sous forme de variance. À partir de cette formulation de la variance, nous développons un outil d'analyse pouvant être utilisé pour déterminer le taux de convergence théorique de la variance de différents schémas d'échantillonnage proposés dans la littérature. Notre analyse fournit un éclairage sur les bonnes pratiques à mettre en œuvre dans la définition de nouveaux schémas d'échantillonnage basés sur l'intégrande / This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration schemes are heavily employed to solve these high dimensional integrals. One of the most important aspect of any numerical integration method is sampling. The way samples are distributed on an integration domain can greatly affect the final result. For example, in images, the effects of various sampling patterns appear in the form of either structural artifacts or completely unstructured noise. In many cases, we may get completely false (biased) results due to the sampling pattern used in integration. The distribution of sampling patterns can be characterized using their Fourier power spectra. It is also possible to use the Fourier power spectrum as input, to generate the corresponding sample distribution. This further allows spectral control over the sample distributions. Since this spectral control allows tailoring new sampling patterns directly from the input Fourier power spectrum, it can be used to improve error in integration. However, a direct relation between the error in Monte Carlo integration and the sampling power spectrum is missing. In this work, we propose a variance formulation, that establishes a direct link between the variance in Monte Carlo integration and the power spectra of both the sampling pattern and the integrand involved. To derive our closed-form variance formulation, we use the notion of homogeneous sample distributions that allows expression of error in Monte Carlo integration, only in the form of variance. Based on our variance formulation, we develop an analysis tool that can be used to derive theoretical variance convergence rates of various state-of-the-art sampling patterns. Our analysis gives insights to design principles that can be used to tailor new sampling patterns based on the integrand
2

Pricing American options with jump-diffusion by Monte Carlo simulation

Fouse, Bradley Warren January 1900 (has links)
Master of Science / Department of Industrial & Manufacturing Systems Engineering / Chih-Hang Wu / In recent years the stock markets have shown tremendous volatility with significant spikes and drops in the stock prices. Within the past decade, there have been numerous jumps in the market; one key example was on September 17, 2001 when the Dow industrial average dropped 684 points following the 9-11 attacks on the United States. These evident jumps in the markets show the inaccuracy of the Black-Scholes model for pricing options. Merton provided the first research to appease this problem in 1976 when he extended the Black-Scholes model to include jumps in the market. In recent years, Kou has shown that the distribution of the jump sizes used in Merton’s model does not efficiently model the actual movements of the markets. Consequently, Kou modified Merton’s model changing the jump size distribution from a normal distribution to the double exponential distribution. Kou’s research utilizes mathematical equations to estimate the value of an American put option where the underlying stocks follow a jump-diffusion process. The research contained within this thesis extends on Kou’s research using Monte Carlo simulation (MCS) coupled with least-squares regression to price this type of American option. Utilizing MCS provides a continuous exercise and pricing region which is a distinct difference, and advantage, between MCS and other analytical techniques. The aim of this research is to investigate whether or not MCS is an efficient means to pricing American put options where the underlying stock undergoes a jump-diffusion process. This thesis also extends the simulation to utilize copulas in the pricing of baskets, which contains several of the aforementioned type of American options. The use of copulas creates a joint distribution from two independent distributions and provides an efficient means of modeling multiple options and the correlation between them. The research contained within this thesis shows that MCS provides a means of accurately pricing American put options where the underlying stock follows a jump-diffusion. It also shows that it can be extended to use copulas to price baskets of options with jump-diffusion. Numerical examples are presented for both portions to exemplify the excellent results obtained by using MCS for pricing options in both single dimension problems as well as multidimensional problems.
3

Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo / Spatial and spectral analysis of sampling patterns for Monte Carlo integration

Pilleboue, Adrien 19 November 2015 (has links)
L’échantillonnage est une étape clé dans le rendu graphique. Il permet d’intégrer la lumière arrivant en un point de la scène pour en calculer sa couleur. Généralement, la méthode utilisée est l’intégration Monte Carlo qui approxime cette intégrale en choisissant un nombre fini d’échantillons. La réduction du biais et de la variance de l’intégration Monte Carlo est devenue une des grandes problématiques en rendu réaliste. Les techniques trouvées consistent à placer les points d’échantillonnage avec intelligence de façon à rendre la distribution la plus uniforme possible tout en évitant les régularités. Les années 80 ont été de ce point de vue un tournant dans ce domaine, avec l’apparition de nouvelles méthodes stochastiques. Ces méthodes ont, grâce à une meilleure compréhension des liens entre intégration Monte Carlo et échantillonnage, permis de réduire le bruit et la variance des images générées, et donc d’améliorer leur qualité. En parallèle, la complexité des méthodes d’échantillonnage s’est considérablement améliorée, permettant d’obtenir des méthodes à la fois rapides et efficaces en termes de qualité. Cependant, ces avancées ont jusqu’à là été faites par tâtonnement et se sont axées sur deux points majeurs : l’amélioration de l’uniformité du motif d’échantillonnage et la suppression des régularités. Bien que des théories permettant de borner l’erreur d’intégration existent, elles sont souvent limitées, voire inapplicables dans le domaine de l’informatique graphique. Cette thèse propose de rassembler les outils d’analyse des motifs d’échantillonnages et de les mettre en relation. Ces outils peuvent caractériser des propriétés spatiales, comme la distribution des distances entre points, ou bien spectrales à l’aide de la transformée de Fourier. Nous avons ensuite utilisé ces outils afin de donner une expression simple de la variance et du biais dans l’intégration Monte Carlo, en utilisant des prérequis compatibles avec le rendu d’image. Finalement, nous présentons une boite à outils théorique permettant de déterminer la vitesse de convergence d’une méthode d’échantillonnage à partir de son profil spectral. Cette boite à outils est notamment utilisée afin de classifier les méthodes d’échantillonnage existantes, mais aussi pour donner des indications sur les principes fondamentaux nécessaires à la conception de nouveaux algorithmes d’échantillonnage / Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms
4

Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR

Mesado Melia, Carles 01 September 2017 (has links)
This PhD study, developed at Universitat Politècnica de València (UPV), aims to cover the first phase of the benchmark released by the expert group on Uncertainty Analysis in Modeling (UAM-LWR). The main contribution to the benchmark, made by the thesis' author, is the development of a MATLAB program requested by the benchmark organizers. This is used to generate neutronic libraries to distribute among the benchmark participants. The UAM benchmark pretends to determine the uncertainty introduced by coupled multi-physics and multi-scale LWR analysis codes. The benchmark is subdivided into three phases: 1. Neutronic phase: obtain collapsed and homogenized problem-dependent cross sections and criticality analyses. 2. Core phase: standalone thermohydraulic and neutronic codes. 3. System phase: coupled thermohydraulic and neutronic code. In this thesis the objectives of the first phase are covered. Specifically, a methodology is developed to propagate the uncertainty of cross sections and other neutronic parameters through a lattice physics code and core simulator. An Uncertainty and Sensitivity (U&S) analysis is performed over the cross sections contained in the ENDF/B-VII nuclear library. Their uncertainty is propagated through the lattice physics code SCALE6.2.1, including the collapse and homogenization phase, up to the generation of problem-dependent neutronic libraries. Afterward, the uncertainty contained in these libraries can be further propagated through a core simulator, in this study PARCSv3.2. The module SAMPLER -available in the latest release of SCALE- and DAKOTA 6.3 statistical tool are used for the U&S analysis. As a part of this process, a methodology to obtain neutronic libraries in NEMTAB format -to be used in a core simulator- is also developed. A code-to-code comparison with CASMO-4 is used as a verification. The whole methodology is tested using a Boiling Water Reactor (BWR) reactor type. Nevertheless, there is not any concern or limitation regarding its use in any other type of nuclear reactor. The Gesellschaft für Anlagen und Reaktorsicherheit (GRS) stochastic methodology for uncertainty quantification is used. This methodology makes use of the high-fidelity model and nonparametric sampling to propagate the uncertainty. As a result, the number of samples (determined using the revised Wilks' formula) does not depend on the number of input parameters but only on the desired confidence and uncertainty of output parameters. Moreover, the output Probability Distribution Functions (PDFs) are not subject to normality. The main disadvantage is that each input parameter must have a pre-defined PDF. If possible, input PDFs are defined using information found in the related literature. Otherwise, the uncertainty definition is based on expert judgment. A second scenario is used to propagate the uncertainty of different thermohydraulic parameters through the coupled code TRACE5.0p3/PARCSv3.0. In this case, a PWR reactor type is used and a transient control rod drop occurrence is simulated. As a new feature, the core is modeled chan-by-chan following a fully 3D discretization. No other study is found using a detailed 3D core. This U&S analysis also makes use of the GRS methodology and DAKOTA 6.3. / Este trabajo de doctorado, desarrollado en la Universitat Politècnica de València (UPV), tiene como objetivo cubrir la primera fase del benchmark presentado por el grupo de expertos Uncertainty Analysis in Modeling (UAM-LWR). La principal contribución al benchmark, por parte del autor de esta tesis, es el desarrollo de un programa de MATLAB solicitado por los organizadores del benchmark, el cual se usa para generar librerías neutrónicas a distribuir entre los participantes del benchmark. El benchmark del UAM pretende determinar la incertidumbre introducida por los códigos multifísicos y multiescala acoplados de análisis de reactores de agua ligera. El citado benchmark se divide en tres fases: 1. Fase neutrónica: obtener los parámetros neutrónicos y secciones eficaces del problema específico colapsados y homogenizados, además del análisis de criticidad. 2. Fase de núcleo: análisis termo-hidráulico y neutrónico por separado. 3. Fase de sistema: análisis termo-hidráulico y neutrónico acoplados. En esta tesis se completan los principales objetivos de la primera fase. Concretamente, se desarrolla una metodología para propagar la incertidumbre de secciones eficaces y otros parámetros neutrónicos a través de un código lattice y un simulador de núcleo. Se lleva a cabo un análisis de incertidumbre y sensibilidad para las secciones eficaces contenidas en la librería neutrónica ENDF/B-VII. Su incertidumbre se propaga a través del código lattice SCALE6.2.1, incluyendo las fases de colapsación y homogenización, hasta llegar a la generación de una librería neutrónica específica del problema. Luego, la incertidumbre contenida en dicha librería puede continuar propagándose a través de un simulador de núcleo, para este estudio PARCSv3.2. Para el análisis de incertidumbre y sensibilidad se ha usado el módulo SAMPLER -disponible en la última versión de SCALE- y la herramienta estadística DAKOTA 6.3. Como parte de este proceso, también se ha desarrollado una metodología para obtener librerías neutrónicas en formato NEMTAB para ser usadas en simuladores de núcleo. Se ha realizado una comparación con el código CASMO-4 para obtener una verificación de la metodología completa. Esta se ha probado usando un reactor de agua en ebullición del tipo BWR. Sin embargo, no hay ninguna preocupación o limitación respecto a su uso con otro tipo de reactor nuclear. Para la cuantificación de la incertidumbre se usa la metodología estocástica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Esta metodología hace uso del modelo de alta fidelidad y un muestreo no paramétrico para propagar la incertidumbre. Como resultado, el número de muestras (determinado con la fórmula revisada de Wilks) no depende del número de parámetros de entrada, sólo depende del nivel de confianza e incertidumbre deseados de los parámetros de salida. Además, las funciones de distribución de probabilidad no están limitadas a normalidad. El principal inconveniente es que se ha de disponer de las distribuciones de probabilidad de cada parámetro de entrada. Si es posible, las distribuciones de probabilidad de entrada se definen usando información encontrada en la literatura relacionada. En caso contrario, la incertidumbre se define en base a la opinión de un experto. Se usa un segundo escenario para propagar la incertidumbre de diferentes parámetros termo-hidráulicos a través del código acoplado TRACE5.0p3/PARCSv3.0. En este caso, se utiliza un reactor tipo PWR para simular un transitorio de una caída de barra. Como nueva característica, el núcleo se modela elemento a elemento siguiendo una discretización totalmente en 3D. No se ha encontrado ningún otro estudio que use un núcleo tan detallado en 3D. También se usa la metodología GRS y el DAKOTA 6.3 para este análisis de incertidumbre y sensibilidad. / Aquest treball de doctorat, desenvolupat a la Universitat Politècnica de València (UPV), té com a objectiu cobrir la primera fase del benchmark presentat pel grup d'experts Uncertainty Analysis in Modeling (UAM-LWR). La principal contribució al benchmark, per part de l'autor d'aquesta tesi, es el desenvolupament d'un programa de MATLAB sol¿licitat pels organitzadors del benchmark, el qual s'utilitza per a generar llibreries neutròniques a distribuir entre els participants del benchmark. El benchmark del UAM pretén determinar la incertesa introduïda pels codis multifísics i multiescala acoblats d'anàlisi de reactors d'aigua lleugera. El citat benchmark es divideix en tres fases: 1. Fase neutrònica: obtenir els paràmetres neutrònics i seccions eficaces del problema específic, col¿lapsats i homogeneïtzats, a més de la anàlisi de criticitat. 2. Fase de nucli: anàlisi termo-hidràulica i neutrònica per separat. 3. Fase de sistema: anàlisi termo-hidràulica i neutrònica acoblats. En aquesta tesi es completen els principals objectius de la primera fase. Concretament, es desenvolupa una metodologia per propagar la incertesa de les seccions eficaces i altres paràmetres neutrònics a través d'un codi lattice i un simulador de nucli. Es porta a terme una anàlisi d'incertesa i sensibilitat per a les seccions eficaces contingudes en la llibreria neutrònica ENDF/B-VII. La seua incertesa es propaga a través del codi lattice SCALE6.2.1, incloent les fases per col¿lapsar i homogeneïtzar, fins aplegar a la generació d'una llibreria neutrònica específica del problema. Després, la incertesa continguda en la esmentada llibreria pot continuar propagant-se a través d'un simulador de nucli, per a aquest estudi PARCSv3.2. Per a l'anàlisi d'incertesa i sensibilitat s'ha utilitzat el mòdul SAMPLER -disponible a l'última versió de SCALE- i la ferramenta estadística DAKOTA 6.3. Com a part d'aquest procés, també es desenvolupa una metodologia per a obtenir llibreries neutròniques en format NEMTAB per ser utilitzades en simuladors de nucli. S'ha realitzat una comparació amb el codi CASMO-4 per obtenir una verificació de la metodologia completa. Aquesta s'ha provat utilitzant un reactor d'aigua en ebullició del tipus BWR. Tanmateix, no hi ha cap preocupació o limitació respecte del seu ús amb un altre tipus de reactor nuclear. Per a la quantificació de la incertesa s'utilitza la metodologia estocàstica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Aquesta metodologia fa ús del model d'alta fidelitat i un mostreig no paramètric per propagar la incertesa. Com a resultat, el nombre de mostres (determinat amb la fórmula revisada de Wilks) no depèn del nombre de paràmetres d'entrada, sols depèn del nivell de confiança i incertesa desitjats dels paràmetres d'eixida. A més, las funcions de distribució de probabilitat no estan limitades a la normalitat. El principal inconvenient és que s'ha de disposar de les distribucions de probabilitat de cada paràmetre d'entrada. Si és possible, les distribucions de probabilitat d'entrada es defineixen utilitzant informació trobada a la literatura relacionada. En cas contrari, la incertesa es defineix en base a l'opinió d'un expert. S'utilitza un segon escenari per propagar la incertesa de diferents paràmetres termo-hidràulics a través del codi acoblat TRACE5.0p3/PARCSv3.0. En aquest cas, s'utilitza un reactor tipus PWR per simular un transitori d'una caiguda de barra. Com a nova característica, cal assenyalar que el nucli es modela element a element seguint una discretizació totalment 3D. No s'ha trobat cap altre estudi que utilitze un nucli tan detallat en 3D. També s'utilitza la metodologia GRS i el DAKOTA 6.3 per a aquesta anàlisi d'incertesa i sensibilitat.¿ / Mesado Melia, C. (2017). Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86167

Page generated in 0.0664 seconds