31 |
Experimental Studies and Modeling of Solid-State Anaerobic Digestion for Enhanced Methane Production from Lignocellulosic BiomassXu, Fuqing 29 October 2014 (has links)
No description available.
|
32 |
Evaluation of Harvesting, Densification, and Storage Practices of Corn Stover for Bioenergy Feedstock ProductionBillman, Ryan January 2014 (has links)
No description available.
|
33 |
Techno-economic Analysis of Butanol Production through Acetone-Butanol-Ethanol FermentationBaral, Nawa Raj January 2016 (has links)
No description available.
|
34 |
Crop residue management effects on crop production, greenhouse gases emissions, and soil quality in the Mid-Atlantic USABattaglia, Martin 19 December 2018 (has links)
Cellulosic biomass-to-bioenergy systems can provide environmental and economic benefits to modern societies, reducing the dependence on fossil-fuels and greenhouse gas emissions while simultaneously improving rural economies. Corn (Zea mays L.) stover and wheat straw (Triticum aestivum L.) residues have particular promise given these crops are widely grown and their cellulosic fractions present a captured resource as a co-product of grain production. Annual systems also offer the ability to change crops rapidly in response to changing market demands. However, concerns exist about residue removal effects on soil health, greenhouse gases emissions and subsequent crop productivity. The carbon footprint and the crop yield productivity and soil health responses resulting from the removal of crop residues has been studied extensively over the last 20 years, but this research has been largely conducted in the Corn Belt. To investigate the impact of crop residue removal in the Mid-Atlantic USA, combinations of corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) and wheat straw (0, 1.0, 2.0, and 3.0 Mgha-1) were soil applied in a corn-wheat/soybean (Glycine max L. Merr.) rotation in Virginia's Coastal Plain. Corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) was applied in a continuous corn cropping system in the Ridge/Valley province. For each system, residues were applied following grain harvest over two production cycles. Each experiment was conducted as a randomized complete design with four replications. The highest rates of stover retention resulted in greater greenhouse gas emissions in year 1, but not year 2 of these studies and did not affect overall global warming potentials. Stover application also increased soil carbon but had little effect on other measures of soil quality. Stover K levels were greater with high rates of stover retention. Overall, these studies indicate little effect of residue removal or retention (above typical residue production rates) on subsequent crop production, greenhouse gas emissions, or soil health measures in the short term. This study is one of the first to assess residue removal in the Mid-Atlantic USA and is the first study to investigate the impacts that managing more than one crop residue in a multi-crop system. Longer-term research of this type may be warranted both to determine the consequences of residue management and to start building a regionally-specific body of knowledge about these practices. / Ph. D. / Over the last decade, strategic economic and environmental concerns have increased interest in the use of crop residues as sustainable, renewable sources for bioenergy and bio-products. Most of the work investigating the sustainability of residue removal has occurred in the US Corn Belt, where corn stover and wheat straw (the part of the plant that is not grain) supplies are abundant. Although the research data from the Corn Belt provide guarded optimism about residue harvest systems in the Midwest, it is not suitable to extrapolate these results to the South because of differences in soils, climate, and cropping systems. Cooler, humid conditions can sustain higher levels of soil organic matter, lessening but not eliminating concerns about stover removal. Current research from the Midwest region suggests routine stover harvest – within limits – can be sustainable. The development of new bioenergy and bioproduct industries in the Southeast region is leading to a growing expectation that regional cropping systems will supply the millions of tons of biomass needed for these new businesses. However, few data are available regarding sustainable crop residue harvest from the Southeast. Sustainable levels of residue removal may be quite low given regional soil and climatic conditions, and the effects of residue removal on soil health parameters and greenhouse gas emissions remain to be defined. The purpose of this project was to determine the amount of corn stover and wheat straw can sustainably be harvested from Virginia’s grain-based cropping systems without reducing plant productivity or soil quality or increasing GHG emissions. This research generated regionally relevant information on the impacts of crop residue removal to help determine whether harvesting wheat straw and corn stover can be a sustainable practice for the region’s cropping systems. In a first stage, short term impacts of residue removal on soil quality and greenhouse gases were measured in Blacksburg and New Kent, VA, over the period 2015-2017.
|
35 |
Fluxos de emergência, crescimento e manejo alternativo de Conyza spp. resistente ao glyphosate / Emergence trends, growth and alternative management of glyphosate-resistant Conyza spp.Soares, Daniel Jorge 10 April 2014 (has links)
Casos reportados de buva com resistência ao glyphosate têm aumentado, ano após ano, a importância dessa planta daninha no cenário agrícola brasileiro. Com o intuito de entender alguns aspectos de sua biologia que resultem em manejo mais adequado, os objetivos deste trabalho foram: (i) identificar os períodos do ano em que ocorrem os maiores fluxos de emergência da buva e analisar seu crescimento e desenvolvimento em dois ambientes agrícolas distintos; (ii) avaliar os efeitos da cobertura vegetal e umidade em sua germinação e emergência; (iii) construir curvas de dose-resposta de um biótipo de Conyza bonariensis resistente ao glyphosate para herbicidas alternativos e (iv) avaliar as opções de manejo químico desse biótipo após o corte e rebrota. Para esses objetivos, experimentos foram conduzidos em campo e casa-de-vegetação nos municípios de Santa Cruz das Palmeiras, SP (SCP) e Não-Me-Toque, RS (NMT), entre maio de 2010 a maio de 2012. Em condições de campo, observou-se em SCP que a emergência da buva ocorre de forma escalonada, sendo mais concentrada no final do verão e início da primavera e a precipitação e a presença de pouca cobertura vegetal no solo parecem exercer mais influência que a temperatura. Em NMT, o fluxo de emergência é mais concentrado no inverno, em que a precipitação não é fator limitante, sendo a germinação e emergência favorecidas por temperaturas mais baixas. Nos dois locais, plantas que germinam na época mais fria do ano (julho) apresentam desenvolvimento inicial mais lento, com acúmulo de biomassa mais intenso e concentrado em torno dos 90-104 dias após a semeadura (DAS); plantas que germinam na primavera (setembro) também apresentam desenvolvimento inicial lento, porém seu crescimento é mais distribuído ao longo do tempo, com os picos de acúmulo aos 80-90 DAS. Em condições de casa-de-vegetação, a disponibilidade hídrica do solo foi mais importante para a emergência de plântulas de buva que a quantidade de cobertura vegetal (palha). Em solo úmido, menores quantidades de palha favorecem a emergência da buva em relação ao solo descoberto. Quantidades maiores de palha promovem supressão de sua emergência. A resistência ao glyphosate foi confirmada para o biótipo de C. bonariensis, coletado em SCP (biótipo B2) e a eficiência dos herbicidas alternativos foi diferente em função dos estádios de desenvolvimento desse biótipo no momento da aplicação. Os herbicidas metsulfuron, diclosulam, 2,4-D, dicamba, atrazine, glufosinate e paraquat foram os mais consistentes no controle do biótipo resistente, sendo que, no estádio mais avançado, a associação com glyphosate agregou no controle para metsulfuron, diclosulam e 2,4-D. Após o corte, controle mais eficiente da rebrota (biótipo B2) foi obtido quando a aplicação ocorreu no mesmo dia do corte que 7 dias depois e os tratamentos mais eficientes nas duas situações foram glyphosate + diclosulam, glyphosate + 2,4-D e 2,4-D. A associação de glyphosate aos tratamentos incrementou o controle da rebrota independentemente da época de aplicação. / Reported cases of glyphosate resistant hairy fleabane have increased its im-portance in Brazilian agricultural. To understand the key principles to effective man-agement, the objectives of this research were to: (i) analyze hairy fleabane growth and development patterns in two different agricultural environments during peak emergence, (ii) evaluate the effects of stover and soil moisture on seedling emer-gence, (iii) obtain dose-response curves for alternative herbicides in a Conyza bonariensis glyphosate-resistant biotype and (iv) evaluate chemical control options for this biotype after cutting and regrowth. For these objectives, experiments in the field and greenhouse were conducted in Santa Cruz das Palmeiras, Sao Paulo State (SCP) and Nao-Me-Toque, Rio Grande do Sul State (NMT), during May, 2010 to May, 2012. At SCP, the germination and emergence of hairy fleabane occurred cycli-cally, peaking more in late summer and early spring and influenced by increased rainfall. In addition, the presence of little crop residue or stover in the ground seemed to exert more influence than temperature. At NMT, emergence was more concen-trated during the winter, when precipitation is not a limiting factor. Germination and emergence were favored by lower temperatures. For both sites, plants that germinat-ed in the coldest season of the year (July) showed slower initial development, with a more intensive biomass accumulation and peaked around 90-104 days after planting. Plants that germinated in the spring (September) also showed slower initial develop-ment, but their growth was more evenly distributed over time, and peaked about 80-90 days after planting. In greenhouse conditions, soil water content was more im-portant for influencing seedling emergence of hairy fleabane than the amount of stover and the highest emergence was observed in moist soil. In the presence of moisture, lower amounts of stover increased seedling emergence of hairy fleabane compared to bare soil. The presence of large quantities of stover on the soil surface resulted in emergence suppression. Glyphosate resistance in Conyza bonariensis, biotype B2, was confirmed by dose-response curves with susceptible biotype. The efficacy of alternative herbicides was different depending on the stage of the resistant biotype at application timing. The herbicides metsulfuron, diclosulam, 2,4-D, dicamba, atrazine, glufosinate and paraquat were the most effective in controlling the resistant biotype. In later stages the association with glyphosate resulted in a better control with metsulfuron, diclosulam and 2,4-D. More efficient control of hairy flea-bane regrowth (biotype B2) was observed when herbicides were applied on the same day that the plants were cut than when applied 7 days after cutting. The most effec-tive herbicide treatments in both situations were glyphosate + diclosulam, glyphosate + 2,4-D, and 2,4-D alone. The association of glyphosate in the herbicide treatments increased control of hairy fleabane regrowth regardless of application timing.
|
36 |
Fluxos de emergência, crescimento e manejo alternativo de Conyza spp. resistente ao glyphosate / Emergence trends, growth and alternative management of glyphosate-resistant Conyza spp.Daniel Jorge Soares 10 April 2014 (has links)
Casos reportados de buva com resistência ao glyphosate têm aumentado, ano após ano, a importância dessa planta daninha no cenário agrícola brasileiro. Com o intuito de entender alguns aspectos de sua biologia que resultem em manejo mais adequado, os objetivos deste trabalho foram: (i) identificar os períodos do ano em que ocorrem os maiores fluxos de emergência da buva e analisar seu crescimento e desenvolvimento em dois ambientes agrícolas distintos; (ii) avaliar os efeitos da cobertura vegetal e umidade em sua germinação e emergência; (iii) construir curvas de dose-resposta de um biótipo de Conyza bonariensis resistente ao glyphosate para herbicidas alternativos e (iv) avaliar as opções de manejo químico desse biótipo após o corte e rebrota. Para esses objetivos, experimentos foram conduzidos em campo e casa-de-vegetação nos municípios de Santa Cruz das Palmeiras, SP (SCP) e Não-Me-Toque, RS (NMT), entre maio de 2010 a maio de 2012. Em condições de campo, observou-se em SCP que a emergência da buva ocorre de forma escalonada, sendo mais concentrada no final do verão e início da primavera e a precipitação e a presença de pouca cobertura vegetal no solo parecem exercer mais influência que a temperatura. Em NMT, o fluxo de emergência é mais concentrado no inverno, em que a precipitação não é fator limitante, sendo a germinação e emergência favorecidas por temperaturas mais baixas. Nos dois locais, plantas que germinam na época mais fria do ano (julho) apresentam desenvolvimento inicial mais lento, com acúmulo de biomassa mais intenso e concentrado em torno dos 90-104 dias após a semeadura (DAS); plantas que germinam na primavera (setembro) também apresentam desenvolvimento inicial lento, porém seu crescimento é mais distribuído ao longo do tempo, com os picos de acúmulo aos 80-90 DAS. Em condições de casa-de-vegetação, a disponibilidade hídrica do solo foi mais importante para a emergência de plântulas de buva que a quantidade de cobertura vegetal (palha). Em solo úmido, menores quantidades de palha favorecem a emergência da buva em relação ao solo descoberto. Quantidades maiores de palha promovem supressão de sua emergência. A resistência ao glyphosate foi confirmada para o biótipo de C. bonariensis, coletado em SCP (biótipo B2) e a eficiência dos herbicidas alternativos foi diferente em função dos estádios de desenvolvimento desse biótipo no momento da aplicação. Os herbicidas metsulfuron, diclosulam, 2,4-D, dicamba, atrazine, glufosinate e paraquat foram os mais consistentes no controle do biótipo resistente, sendo que, no estádio mais avançado, a associação com glyphosate agregou no controle para metsulfuron, diclosulam e 2,4-D. Após o corte, controle mais eficiente da rebrota (biótipo B2) foi obtido quando a aplicação ocorreu no mesmo dia do corte que 7 dias depois e os tratamentos mais eficientes nas duas situações foram glyphosate + diclosulam, glyphosate + 2,4-D e 2,4-D. A associação de glyphosate aos tratamentos incrementou o controle da rebrota independentemente da época de aplicação. / Reported cases of glyphosate resistant hairy fleabane have increased its im-portance in Brazilian agricultural. To understand the key principles to effective man-agement, the objectives of this research were to: (i) analyze hairy fleabane growth and development patterns in two different agricultural environments during peak emergence, (ii) evaluate the effects of stover and soil moisture on seedling emer-gence, (iii) obtain dose-response curves for alternative herbicides in a Conyza bonariensis glyphosate-resistant biotype and (iv) evaluate chemical control options for this biotype after cutting and regrowth. For these objectives, experiments in the field and greenhouse were conducted in Santa Cruz das Palmeiras, Sao Paulo State (SCP) and Nao-Me-Toque, Rio Grande do Sul State (NMT), during May, 2010 to May, 2012. At SCP, the germination and emergence of hairy fleabane occurred cycli-cally, peaking more in late summer and early spring and influenced by increased rainfall. In addition, the presence of little crop residue or stover in the ground seemed to exert more influence than temperature. At NMT, emergence was more concen-trated during the winter, when precipitation is not a limiting factor. Germination and emergence were favored by lower temperatures. For both sites, plants that germinat-ed in the coldest season of the year (July) showed slower initial development, with a more intensive biomass accumulation and peaked around 90-104 days after planting. Plants that germinated in the spring (September) also showed slower initial develop-ment, but their growth was more evenly distributed over time, and peaked about 80-90 days after planting. In greenhouse conditions, soil water content was more im-portant for influencing seedling emergence of hairy fleabane than the amount of stover and the highest emergence was observed in moist soil. In the presence of moisture, lower amounts of stover increased seedling emergence of hairy fleabane compared to bare soil. The presence of large quantities of stover on the soil surface resulted in emergence suppression. Glyphosate resistance in Conyza bonariensis, biotype B2, was confirmed by dose-response curves with susceptible biotype. The efficacy of alternative herbicides was different depending on the stage of the resistant biotype at application timing. The herbicides metsulfuron, diclosulam, 2,4-D, dicamba, atrazine, glufosinate and paraquat were the most effective in controlling the resistant biotype. In later stages the association with glyphosate resulted in a better control with metsulfuron, diclosulam and 2,4-D. More efficient control of hairy flea-bane regrowth (biotype B2) was observed when herbicides were applied on the same day that the plants were cut than when applied 7 days after cutting. The most effec-tive herbicide treatments in both situations were glyphosate + diclosulam, glyphosate + 2,4-D, and 2,4-D alone. The association of glyphosate in the herbicide treatments increased control of hairy fleabane regrowth regardless of application timing.
|
37 |
Gasification of Biomass, Coal, and Petroleum Coke at High Heating Rates and Elevated PressureLewis, Aaron D 01 November 2014 (has links) (PDF)
Gasification is a process used to convert any carbonaceous species through heterogeneous reaction to obtain the desired gaseous products of H2 and CO which are used to make chemicals, liquid transportation fuels, and power. Both pyrolysis and heterogeneous gasification occur in commercial entrained-flow gasifiers at pressures from 4 to 65 atm with local gas temperatures as high as 2000 °C. Many gasification studies have been performed at moderate temperatures, heating rates, and pressures. In this work, both pyrolysis and char gasification experiments were performed on coal, petroleum coke, and biomass at conditions pertinent to commercial entrained-flow gasifiers. Rapid biomass pyrolysis experiments were performed at atmospheric pressure in an entrained-flow reactor for sawdust, switchgrass, corn stover, and straw mostly using a peak gas temperature of 1163 K at particle residence times ranging from 34 to 113 ms. Biomass pyrolysis was modeled using the Chemical Percolation Devolatilization model assuming that biomass pyrolysis occurs as a weighted average of its individual components (cellulose, hemicellulose, and lignin). Thermal cracking of biomass tar into light gas was included using a first-order model with kinetic parameters regressed in the current study. Char gasification rates were measured for biomass, petroleum coke, and coal in a pressurized entrained-flow reactor at high heating-rate conditions at total pressures between 10 and 15 atm. Peak centerline gas temperatures were between 1611 and 1879 K. The range of particle residence times used in the gasification experiments was 42 to 275 ms. The CO2 gasification rates of biomass and petroleum coke chars were measured at conditions where the reaction environment consisted of approximately 40 and 90 mol% CO2. Steam gasification rates of coal char were measured at conditions where the maximum H2O concentration was 8.6 mol%. Measured data was used to regress apparent kinetic parameters for a first-order model that describes char conversion. The measured char gasification rates were far from the film-diffusion limit, and are pertinent for pulverized particles where no internal particle temperature gradients are important. The modeling and measured data of char gasification rates in this research will aid in the design and efficient operation of commercial entrained-flow gasifiers, as well as provide validation for both existing and future models at a wide range of temperatures and pressures at high heating-rate conditions.
|
38 |
Can we reduce phosphorus runoff into Lake Erie by stimulating soil biota?Susser, Jessica R. 13 December 2018 (has links)
No description available.
|
Page generated in 0.0456 seconds