Spelling suggestions: "subject:"strömningsmekanik.""
11 |
Experiments and Computational Fluid Dynamics on Vapor and Gas Cavitation for Oil HydraulicsOsterland, Sven, Günther, Lennard, Weber, Jürgen 27 February 2024 (has links)
A compressible Euler-Euler computational fluid dynamics (CFD) model for vapor, gas, and pseudo-cavitation in oil-hydraulic flows is presented. For vapor, the Zwart-Gerber-Belamri (ZGB) model is used and for gas cavitation, the Lifante model. The aim is to determine the empirical parameters within the cavitation models for hydraulic oil by comparing CFD results to experiments in a realistic valve. The cavitating flow is visualized and measured for numerous operating points. By degassing, states of pure vapor cavitation are generated. The major findings are: (1) large eddy simulation turbulence modeling is essential, (2) vapor cavitation in mineral oil can be simulated very well with the ZGB model using the determined parameter, and (3) gas cavitation model provides useful results although not all details can be reflected and its scope is limited.
|
12 |
Numerische Simulation von kritischen und nahkritischen Zweiphasenströmungen mit thermischen und fluiddynamischen NichtgleichgewichtseffektenWein, Michael 06 April 2002 (has links) (PDF)
Es wurde ein neues Zweifluidmodell entwickelt, um Nichtgleichgewichtseffekte in kritischen und nahkritischen Ein-komponenten-Zweiphasenströmungen von anfänglich unter-kühlten oder siedenden Fluiden durch Rohre und Düsen zu untersuchen. Das vorgeschlagene Sechs-Gleichungsmodell besteht aus den phasenbezogenen Erhaltungsgleichungen für Masse und Impuls, der Bilanzgleichung für die thermische Energie der flüssigen Phase sowie einer zusätzlichen Transport-gleichung für die volumetrische Blasenanzahl. Zur Lösung des Systems aus partiellen Differentialgleichungen wird ein semi-implizites Finite-Differenzen-Zeitschrittverfahren angewendet. Die Schließung des Gleichungssystems wird durch Einbindung thermodynamischer Beziehungen und konstitutiver Gleichungen, die den strömungsformabhängigen Impuls-, Wärme- und Stofftransport beschreiben, erreicht. Für Strömungssysteme mit spontaner Entspannungsverdampfung aus dem rein flüssigen Zustand (Flashing) werden verschiedene Keimbildungsmodelle eingesetzt, die den Anfangszustand der verzögerten Dampfbildung beschreiben. Auf diese Weise werden thermodynamische Nichtgleichgewichtszustände als Folge von Zuständen mit für die Aktivierung von Keimstellen benötigtem Energieüberschuß, eingeschränkt vorhandener Phasengrenzfläche sowie begrenzter Wärmeübertragung zwischen den Phasen betrachtet. Abweichungen vom fluid-dynamischen Gleichgewicht (Phasenschlupf) ergeben sich aufgrund unterschiedlicher Trägheitseigenschaften und verschieden stark ausgeprägter mechanischer Kopplung zwischen den Phasen. Die mit diesem Modell erhaltenen numerischen Ergebnisse stimmen gut mit experimentellen Werten für Zweiphasen-strömungen mit unterschiedlichen Eintrittsbedingungen und Kanalgeometrien überein. / A new two-fluid flow model has been developed in order to examine non-equilibrium effects in critical and near-critical one-component two-phase flows of initially subcooled or saturated fluids through pipes and nozzles. The six-equation model proposed consists of the phasic conservation equations of mass and momentum, the liquid thermal energy, and of an additional transport equation for the bubble number density. To solve for the unknowns of the system of partial differential equations, a semi-implicit finite difference time-marching method is utilized. The closure of the set of equations is accomplished by thermodynamic relationships and additional constitutive equations describing momentum transport, interphase heat, and mass transfer which account for different flow regimes. For fluid flow systems undergoing a sudden change of phase from the pure liquid state (flashing), distinct nucleation models are included to describe the initial state of delayed vapor generation. In this way thermal non-equilibrium states are considered to be the consequence of excessive energy states required to activate nucleation sites, of restricted interfacial area and limited heat transfer between the phases. Deviation from fluid-dynamic equilibrium (phasic slip) results from different inertial properties and from distinct strength of mechanical coupling between the phases. The numerical results obtained with this model agree quite well with experimental data for two-phase flows with various inlet conditions and channel geometries.
|
13 |
Parallele Algorithmen für die numerische Simulation dreidimensionaler, disperser Mehrphasenströmungen und deren Anwendung in der Verfahrenstechnik / Parallel algorithms for the numerical simulation of 3-dimensional disperse multiphase flows and theire application in process technologyFrank, Thomas 30 August 2002 (has links)
Many fluid flow processes in nature and technology are characterized by the presence
and coexistence of two ore more phases. These two- or multiphase flows are furthermore
characterized by a greater complexity of possible flow phenomena and phase interactions
then in single phase flows and therefore the numerical simulation of these multiphase
flows is usually demanding a much higher numerical effort. The presented work
summarizes the research and development work of the author and his research group on
"Numerical Methods for Multiphase Flows" at the University of Technology, Chemnitz over the
last years. This work was focussed on the development and application of numerical
approaches for the prediction of disperse fluid-particle flows in the field of
fluid mechanics and process technology.
A main part of the work presented here is concerned with the modelling of different
physical phenomena in fluid-particle flows under the paradigm of the Lagrangian treatment
of the particle motion in the fluid. The Eulerian-Lagrangian approach has proved to be an
especially well suited numerical approach for the simulation of disperse multiphase flows.
On the other hand its application requires a large amount of (parallel) computational power
and other computational ressources. The models described in this work give a mathematical
description of the relevant forces and momentum acting on a single spherical particle in
the fluid flow field, the particle-wall interaction and the particle erosion to the wall.
Further models has been derived in order to take into account the influence of
particle-particle collisions on the particle motion as well as the interaction of the
fluid flow turbulence with the particle motion. For all these models the state-of-the-art
from literature is comprehensively discussed.
The main field of interest of the work presented here is in the area of development,
implementation, investigation and comparative evaluation of parallelization
methods for the Eulerian-Lagrangian approach for the simulation of disperse multiphase
flows. Most of the priorly existing work of other authors is based on shared-memory
approaches, quasi-serial or static domain decomposition approaches. These parallelization
methods are mostly limited in theire applicability and scalability to parallel computer
architectures with a limited degree of parallelism (a few number of very powerfull compute
nodes) and to more or less homogeneous multiphase flows with uniform particle concentration
distribution and minor complexity of phase interactions. This work now presents a novel
parallelization method developed by the author, realizing a dynamic load balancing
for the Lagrangian approach (DDD - Dynamic Domain Decomposition) and therefore leading
to a substantial decrease in total computation time necessary for multiphase flow
computations with the Eulerian-Lagrangian approach.
Finally, the developed and entirely parallelized Eulerian-Lagrangian approach MISTRAL/PartFlow-3D
offers the opportunity of efficient investigation of disperse multiphase flows with
higher concentrations of the disperse phase and the resulting strong phase interaction
phenomena (four-way coupling). / Viele der in Natur und Technik ablaufenden Strömungsvorgänge sind durch die
Koexistenz zweier oder mehrerer Phasen gekennzeichnet. Diese sogenannten Zwei- oder
Mehrphasensysteme zeichnen sich durch ein hohes Maß an Komplexität aus und
erfordern oft einen sehr hohen rechentechnischen Aufwand zu deren numerischer Simulation.
Die vorliegende Arbeit faßt langjährige Forschungs- und Entwicklungsarbeiten
des Autors und seiner Forschungsgruppe "Numerische Methoden für Mehrphasenströmungen"
an der TU Chemnitz zusammen, die sich mit der Entwicklung und Anwendung numerischer
Berechnungsverfahren für disperse Fluid-Partikel-Strömungen auf dem Gebiet
der Strömungs- und Verfahrenstechnik befassen.
Ein wesentlicher Teil der Arbeit befaßt sich mit der Modellierung unterschiedlicher
physikalischer Phänomene in Fluid-Partikel-Strömungen unter dem Paradigma der Lagrange'schen
Betrachtungsweise der Partikelbewegung. Das Euler-Lagrange-Verfahren hat sich als
besonders geeignetes Berechnungsverfahren für die numerische Simulation disperser
Mehrphasenströmungen erwiesen, stellt jedoch in seiner Anwendung auch höchste
Anforderungen an die Ressourcen der verwendeten (parallelen) Rechnerarchitekturen.
Die näher ausgeführten mathematisch-physikalischen Modelle liefern eine Beschreibung
der auf eine kugelförmige Einzelpartikel im Strömungsfeld wirkenden Kräfte
und Momente, der Partikel-Wand-Wechselwirkung und der Partikelerosion. Weitere Teilmodelle
dienen der Berücksichtigung von Partikel-Partikel-Stoßvorgängen und der
Wechselwirkung zwischen Fluidturbulenz und Partikelbewegung.
Der Schwerpunkt dieser Arbeit liegt im Weiteren in der Entwicklung, Untersuchung und vergleichenden
Bewertung von Parallelisierungsverfahren für das Euler-Lagrange-Verfahren zur Berechnung von
dispersen Mehrphasenströmungen. Zuvor von anderen Autoren entwickelte Parallelisierungsmethoden
für das Lagrange'sche Berechnungsverfahren basieren im Wesentlichen auf Shared-Memory-Ansätzen,
Quasi-Seriellen Verfahren oder statischer Gebietszerlegung (SDD) und sind somit in ihrer
Einsetzbarkeit und Skalierbarkeit auf Rechnerarchitekturen mit relativ geringer Parallelität
und auf weitgehend homogene Mehrphasenströmungen mit geringer Komplexität der Phasenwechselwirkungen
beschränkt. In dieser Arbeit wird eine vom Autor entwickelte, neuartige Parallelisierungsmethode
vorgestellt, die eine dynamische Lastverteilung für das Lagrange-Verfahren ermöglicht (DDD - Dynamic
Domain Decomposition) und mit deren Hilfe eine deutliche Reduzierung der Gesamtausführungszeiten
einer Mehrphasenströmungsberechnung mit dem Euler-Lagrange-Verfahren möglich ist.
Im Ergebnis steht mit dem vom Autor und seiner Forschungsgruppe entwickelten vollständig parallelisierten
Euler-Lagrange-Verfahren MISTRAL/PartFlow-3D ein numerisches Berechnungsverfahren zur Verfügung,
mit dem disperse Mehrphasenströmungen mit höheren Konzentrationen der dispersen Phase und
daraus resultierenden starken Phasenwechselwirkungen (Vier-Wege-Kopplung) effektiv untersucht
werden können.
|
14 |
Experimentelle und numerische Untersuchung von Gas/Liquid-Phasengrenzflächen als Referenzwert für die hydrostatische Füllstandsmessung in Siedewasserreaktoren / Experimental and numerical investigation of gas/liquid phase boundaries representing the reference level for hydrostatic level measurements in boiling water reactorsSchulz, Stephan 17 February 2014 (has links) (PDF)
Die Dissertation bietet eine umfassende Analyse des quasi-stationären und dynamischen Verhaltens des Bezugspegels in den Nullkammerpegelgefäßen hydrostatischer Füllstandsmesssysteme von Siedewasserreaktoren. Die bislang rein phänomenologisch beschriebenen Übergangsprozesse im Pegelgefäß werden experimentell untersucht und in ihrer Wirkung auf das Messsystem bewertet. Da der Bezugsfüllstand und die Temperaturpulsationen sicherheitsrelevante Messgrößen sind, wird ein Beitrag zur Reaktorsicherheit geleistet.
Die neuartigen, nichtinvasiven Verfahren zur Messung der Phasenverteilung im Pegelgefäß liefern realistische, unverfälschte Messdaten. Die Validierung von Simulationscodes und die sicherheitstechnische Bewertung von Siedewasserreaktoren werden dadurch verbessert.
Das im CFD-Code Ansys CFX 14 entwickelte und experimentell validierte Modell bietet eine wichtige Grundlage für die numerische Simulation des Füllstandsmesssystems in Ergänzung zu Experimenten und zur Einbindung in Systemsimulationen.
|
15 |
Simulation des Wärme- und Stofftransports in Partialoxidationsprozessen / Simulation of Heat and Mass Transport in Partial Oxidation ProcessesRichter, Andreas 18 April 2018 (has links) (PDF)
Die vorliegende Habilitationsschrift stellt den erreichten Stand der CFD-basierten Modellierung ein- und mehrphasiger Hochtemperaturprozesse dar. Die hierzu vorgelegten Arbeiten umfassen die Hochdruck-Partialoxidation von Erdgas, die Vergasung fester Einsatzstoffe in einem endothermen Flugstromreaktor und in einem mehrstufigen Wirbelschichtprozess sowie die Synthesegasaufbereitung in einem neuen Quenchreaktor. Der Forschungsschwerpunkt reicht dabei von der Entwicklung neuer Korrelationen zur Beschreibung der Strömungskräfte und des Wärmeübergangs basierend auf partikelaufgelösten Rechenmodellen über die Modellierung der thermochemischen Konversion reaktiver Einzelpartikel bis hin zur Berechnung und Optimierung unterschiedlicher Hochtemperaturreaktoren. / This habilitation thesis discusses the state of the art for the CFD modeling of single-phase and multi-phase high-temperature processes. The presented publications comprise the high-pressure partial oxidation of natural gas, the gasification of solid fuels in entrained-flow gasifiers and multi-stage fluidized-bed gasifier as well as the syngas treatment in a new quench reactor. The scientific approach covers the development of new correlations for flow forces and heat transfer based on particle-resolved numerical models, the modeling of the thermochemical conversion of reactive single particles, and the calculation and optimization of different high-temperature processes.
|
16 |
Ein Konzept zur numerischen Berechnung inkompressibler Strömungen auf Grundlage einer diskontinuierlichen Galerkin-Methode in Verbindung mit nichtüberlappender GebietszerlegungMüller, Hannes 12 September 1999 (has links)
A new combination of techniques for the numerical computation of incompressible flow is presented. The temporal discretization bases on the discontinuous Galerkin-formulation. Both constant (DG(0)) and linear approximation (DG(1)) in time is discussed. In case of DG(1) an iterative method reduces the problem to a sequence of problems each with the dimension of the DG(0) approach. For the semi-discrete problems a Galerkin/least-squares method is applied. Furthermore a non-overlapping domain decomposition method can be used for a parallelized computation. The main advantage of this approach is the low amount of information which must be exchanged between the subdomains. Due to the slight bandwidth a workstation-cluster is a suitable platform. Otherwise this method is efficient only for a small number of subdomains. The interface condition is of the Robin/Robin-type and for the Navier-Stokes equation a formulation introducing a further pressure interface condition is used. Additionally a suggestion for the implementation of the standard k-epsilon turbulence model with special wall function is done in this context. All the features mentioned above are implemented in a code called ParallelNS. Using this code the verification of this approach was done on a large number of examples ranging from simple advection-diffusion problems to turbulent convection in a closed cavity.
|
17 |
Volumetric measurements of the transitional backward facing step flowKitzhofer, Jens 08 August 2011 (has links)
The thesis describes state of the art volumetric measurement techniques and applies a 3D measurement technique, 3D Scanning Particle Tracking Velocimetry, to the transitional backward facing step flow. The measurement technique allows the spatial and temporal analysis of coherent structures apparent at the backward facing step. The thesis focusses on the extraction and interaction of coherent flow structures like shear layers or vortical structures.
|
18 |
Simulation des Wärme- und Stofftransports in PartialoxidationsprozessenRichter, Andreas 27 March 2018 (has links)
Die vorliegende Habilitationsschrift stellt den erreichten Stand der CFD-basierten Modellierung ein- und mehrphasiger Hochtemperaturprozesse dar. Die hierzu vorgelegten Arbeiten umfassen die Hochdruck-Partialoxidation von Erdgas, die Vergasung fester Einsatzstoffe in einem endothermen Flugstromreaktor und in einem mehrstufigen Wirbelschichtprozess sowie die Synthesegasaufbereitung in einem neuen Quenchreaktor. Der Forschungsschwerpunkt reicht dabei von der Entwicklung neuer Korrelationen zur Beschreibung der Strömungskräfte und des Wärmeübergangs basierend auf partikelaufgelösten Rechenmodellen über die Modellierung der thermochemischen Konversion reaktiver Einzelpartikel bis hin zur Berechnung und Optimierung unterschiedlicher Hochtemperaturreaktoren. / This habilitation thesis discusses the state of the art for the CFD modeling of single-phase and multi-phase high-temperature processes. The presented publications comprise the high-pressure partial oxidation of natural gas, the gasification of solid fuels in entrained-flow gasifiers and multi-stage fluidized-bed gasifier as well as the syngas treatment in a new quench reactor. The scientific approach covers the development of new correlations for flow forces and heat transfer based on particle-resolved numerical models, the modeling of the thermochemical conversion of reactive single particles, and the calculation and optimization of different high-temperature processes.
|
19 |
Numerische Simulation von kritischen und nahkritischen Zweiphasenströmungen mit thermischen und fluiddynamischen NichtgleichgewichtseffektenWein, Michael 12 April 2002 (has links)
Es wurde ein neues Zweifluidmodell entwickelt, um Nichtgleichgewichtseffekte in kritischen und nahkritischen Ein-komponenten-Zweiphasenströmungen von anfänglich unter-kühlten oder siedenden Fluiden durch Rohre und Düsen zu untersuchen. Das vorgeschlagene Sechs-Gleichungsmodell besteht aus den phasenbezogenen Erhaltungsgleichungen für Masse und Impuls, der Bilanzgleichung für die thermische Energie der flüssigen Phase sowie einer zusätzlichen Transport-gleichung für die volumetrische Blasenanzahl. Zur Lösung des Systems aus partiellen Differentialgleichungen wird ein semi-implizites Finite-Differenzen-Zeitschrittverfahren angewendet. Die Schließung des Gleichungssystems wird durch Einbindung thermodynamischer Beziehungen und konstitutiver Gleichungen, die den strömungsformabhängigen Impuls-, Wärme- und Stofftransport beschreiben, erreicht. Für Strömungssysteme mit spontaner Entspannungsverdampfung aus dem rein flüssigen Zustand (Flashing) werden verschiedene Keimbildungsmodelle eingesetzt, die den Anfangszustand der verzögerten Dampfbildung beschreiben. Auf diese Weise werden thermodynamische Nichtgleichgewichtszustände als Folge von Zuständen mit für die Aktivierung von Keimstellen benötigtem Energieüberschuß, eingeschränkt vorhandener Phasengrenzfläche sowie begrenzter Wärmeübertragung zwischen den Phasen betrachtet. Abweichungen vom fluid-dynamischen Gleichgewicht (Phasenschlupf) ergeben sich aufgrund unterschiedlicher Trägheitseigenschaften und verschieden stark ausgeprägter mechanischer Kopplung zwischen den Phasen. Die mit diesem Modell erhaltenen numerischen Ergebnisse stimmen gut mit experimentellen Werten für Zweiphasen-strömungen mit unterschiedlichen Eintrittsbedingungen und Kanalgeometrien überein. / A new two-fluid flow model has been developed in order to examine non-equilibrium effects in critical and near-critical one-component two-phase flows of initially subcooled or saturated fluids through pipes and nozzles. The six-equation model proposed consists of the phasic conservation equations of mass and momentum, the liquid thermal energy, and of an additional transport equation for the bubble number density. To solve for the unknowns of the system of partial differential equations, a semi-implicit finite difference time-marching method is utilized. The closure of the set of equations is accomplished by thermodynamic relationships and additional constitutive equations describing momentum transport, interphase heat, and mass transfer which account for different flow regimes. For fluid flow systems undergoing a sudden change of phase from the pure liquid state (flashing), distinct nucleation models are included to describe the initial state of delayed vapor generation. In this way thermal non-equilibrium states are considered to be the consequence of excessive energy states required to activate nucleation sites, of restricted interfacial area and limited heat transfer between the phases. Deviation from fluid-dynamic equilibrium (phasic slip) results from different inertial properties and from distinct strength of mechanical coupling between the phases. The numerical results obtained with this model agree quite well with experimental data for two-phase flows with various inlet conditions and channel geometries.
|
20 |
Modeling of Mixing in Cross Junction using Computational Fluid DynamicsHammoudi, Hellen 06 August 2021 (has links)
Research has shown that mixing in cross-junctions in water distribution systems is far from perfect, and that the entering fluids bifurcate from each other rather than mix. The purpose of this thesis is to study the behaviour of two fluids entering a cross-junction in a water distribution system. In this context, experimental tests and numerical simulations are performed in order to produce and test the mixing at cross-junctions.
This study focuses on cross-junctions with equal pipe diameters, with flows that can vary from laminar to turbulent. The fluids are pure water and tracer. Different tracer materials with various flow configurations were tested experimentally and numerically.
Firstly, an experimental study of mixing in cross-junctions was performed at the TZW: DVGW-Technologiezentrum Wasser (German Water Center) in Dresden. This experimental study pro-vides an overview of the parameters that can affect the mixing in cross-junctions, and is used to validate the numerical simulations.
Different numerical approaches for modelling the mixing in cross-junctions are presented. The simulations use an existing commercial CFD code, ANSYS CFX 19.1, and are also extensively validated using experimental and numerical results from other researchers. In ANSYS CFX there are several models that can be used to simulate the mixing of two fluids. In this study both fluids are considered to be isothermal incompressible and without phase change. Two mixing models are tested: the additional variable model and the multi-component model. The three-dimensional models use RANS turbulence models and LES simulations. The parameters of the numerical setup were investigated carefully in order to study their effect on the results. Furthermore, the effect of changing the turbulent Schmidt number in the RANS simulations was extensively studied, and the results are compared with the experimental results.
The accuracy of using Large eddy simulation to simulate mixing in cross junction is also tested, taking into consideration the required mesh resolution and the turbulence in the initial bound-ary conditions.
This work presents an applicable numerical approach to simulate the fluid behaviours in cross-junctions. Using this approach, the effect of different parameters is tested, such as: Reynolds number, pipe diameter, mixing time, diffusivity and density difference. The results produced using the numerical approach revealed that one of the main parameters that affect the mixing is the density difference. It has a great effect on the outgoing concentration in cross-junctions, and the mixing behaviour changes when the tracer material and the flow regime are changed. The used approach will help to investigate the effect of various flow parameters on the mixing in cross-junctions. Based on the data set of this study, an empirical conceptual model for mixing in cross-junction is also presented using multiple regression, and there is potential for this model to be further developed in combination with experimental and numerical studies.:Abstract
Kurzfassung
Nomenclature
List of Figures
List of Tables
1 Introduction and Literature Review
1.1 Introduction
1.2 Literature Review
1.2.1 Transport in water distribution system
1.2.2 Mixing in pipe junctions
1.3 Research problems
1.4 Research methodology and objectives
2 Theoretical Background
2.1 Basic equations and terms in pipe hydraulic
2.1.1 Conservation of mass (the equation of continuity)
2.1.2 Conservation of momentum (the Navier-Stokes equations)
2.1.3 Contaminant transport (transport equation)
2.1.4 Reynolds number
2.1.5 Flow development in pipes
2.1.6 Velocity distribution in pipe flows
2.1.7 Definition of concentration and mass fraction
2.1.8 Viscosity
2.2 Turbulence and modeling
2.2.1 Spatial discretization methods
2.2.2 Turbulence models
2.2.3 Direct numerical simulation (DNS)
2.2.4 Reynolds averaged Navier-Stokes Equations (RANS)
2.2.5 Large eddy simulation
2.3 Modeling of mixing in ANSYS CFX
2.3.1 Additional variable
2.3.2 Multi-component flow model
2.3.3 Two-phase flow model
2.4 Mixing in cross-junctions (available models)
2.4.1 Complete mixing model
2.4.2 Bulk advective mixing model (BAM)
2.4.3 BAM-Wrap mixing model
2.4.4 Shao mixing model
3 Experimental Study
3.1 Introduction
3.2 Description of the model network
3.3 Results and discussion
3.3.1 Turbulent flow experiments
3.3.2 Laminar flow experiments
3.3.3 The interpolation of the experimental results
3.4 Conclusion
4 3D Numerical Study using ANSYS CFX
4.1 Introduction to ANSYS CFX
4.1.1 Model setup in ANSYS CFX
4.1.2 Modeling of mixing in cross-junctions
4.2 Additional variable model
4.2.1 Application of Reynolds averaged Navier-Stokes simulation
4.2.2 Sensitivity analysis of URANS simulations
4.2.3 Application of the large eddy simulation
4.2.4 Summary
4.3 Multi-component flow model
4.3.1 Setup of the multi-component simulation model
4.3.2 Results and discussion
4.4 Summary
5 Mixing Model for Cross junction
5.1 Introduction
5.2 Parameter sensitivity Analysis
5.2.1 The influence of changing the Reynolds number
5.2.2 The influence of changing the pipe diameter
5.2.3 The influence of the inflow and outflow ratios
5.2.4 The influence of changing the tracer properties
5.2.5 The influence of the pipe roughness
5.3 Conceptual model for mixing in cross junction
6 Summary
7 Outlook
References
APPENDIX A
APPENDIX B / Frühere Forschungsergebnisse haben gezeigt, dass das Vermischen von gelösten Substanzen in Rohrkreuzen in Wasserversorgungssystemen alles andere als perfekt ist und wenn zwei Flüssigleiten in einem Rohrkreuz eintreten, trennen sie sich eher voneinander anstatt sich zu vermischen. Das Ziel dieser Forschungsarbeit ist es, das Verhalten von zwei Flüssigkeiten in einem Rohrkreuz zu untersuchen. In diesem Zusammenhang werden experimentelle Unter-suchungen und numerische Strömungssimulationen durchgeführt, um das Vermischen an Kreuzungspunkten in Wasserversorgungssystemen zu untersuchen. Diese Arbeit konzentriert sich auf Rohrkreuzen mit gleichen Rohrdurchmessern in Strömungen, die von laminar bis turbulent variieren können. Verschiedene Eigenschaften der Flüssigkeiten mit verschiedenen Strömungskonfigurationen wurden experimentell und numerisch getestet. Zunächst wurden im TZW (DVGW-Technologiezentrum Wasser) die experimentellen Untersuchungen zum Mi-schen in Rohrkreuzungen durchgeführt. Die durchgeführten experimentellen Untersuchungen bieten einen Überblick über die Parameter, die das Mischverhältnis in Kreuzungspunkten be-einflussen können, und werden zur Validierung der numerischen Simulationen verwendet. Verschiedene numerische Ansätze zur Modellierung des Vermischens in Rohrkreuzen werden vorgestellt. Die 3D-numerische Strömungssimulationen verwenden einen vorhandenen kommerziellen CFD-Code, ANSYS CFX 19.1, und werden auch anhand experimenteller und numerischer Ergebnisse anderer Forscher umfassend validiert. In ANSYS CFX gibt es mehre-re Modelle, mit denen das Vermischen von Flüssigkeiten simuliert werden kann. In dieser Arbeit werden beide Flüssigkeiten als isotherm, inkompressibel und ohne Phasenwechsel betrachtet. Es werden zwei Mischmodelle getestet: das Additional Variable Model und das Multi-component Model. Die 3D -Strömungsmodelle verwenden RANS-Turbulenzmodelle und LES-Simulationen. Die Parameter des numerischen Aufbaus wurden sorgfältig untersucht, um ihre Auswirkung auf die Ergebnisse zu untersuchen. Darüber hinaus wurde der Einfluss der Änderung der turbulenten Schmidt-Zahl in den RANS-Simulationen ausführlich untersucht und die Ergebnisse mit den experimentellen Ergebnissen verglichen. Die Genauigkeit der Ver-wendung einer Large-Eddy-Simulation zur Simulation des Vermischens in Rohrkreuz wird ebenfalls getestet, wobei die erforderliche Netzauflösung und die Turbulenzen in den An-fangs- und Randbedingungen berücksichtigt werden. Diese Arbeit präsentiert einen anwend-baren numerischen Ansatz zur Simulation des Fließverhaltens in Rohrkreuzen. Mit diesem Ansatz wird die Wirkung verschiedener Parameter getestet, z. B.: Reynolds-Zahl, Rohrdurch-messer, Vermischungszeit, Diffusivität und Dichteunterschied. Die mit den numerischen Mo-dellen erzielten Ergebnisse zeigten, dass einer der Hauptparameter, die das Vermischen in Rohrkreuzen beeinflussen, der Dichteunterschied ist, welcher einen großen Einfluss auf die ausgehende Konzentration in Kreuzungen hat. Der verwendete numerische Ansatz wird dazu beitragen, die Auswirkung verschiedener Strömungsparameter auf das Vermischen in Rohr-kreuzen zu untersuchen. Basierend auf dem Datensatz dieser Studie wird auch ein empiri-sches konzeptionelles Modell für das Vermischen in Rohrkreuz unter Verwendung multipler Regression vorgestellt. Dieses Modell kann in Kombination mit experimentellen und numeri-schen Studien weiterentwickelt werden.:Abstract
Kurzfassung
Nomenclature
List of Figures
List of Tables
1 Introduction and Literature Review
1.1 Introduction
1.2 Literature Review
1.2.1 Transport in water distribution system
1.2.2 Mixing in pipe junctions
1.3 Research problems
1.4 Research methodology and objectives
2 Theoretical Background
2.1 Basic equations and terms in pipe hydraulic
2.1.1 Conservation of mass (the equation of continuity)
2.1.2 Conservation of momentum (the Navier-Stokes equations)
2.1.3 Contaminant transport (transport equation)
2.1.4 Reynolds number
2.1.5 Flow development in pipes
2.1.6 Velocity distribution in pipe flows
2.1.7 Definition of concentration and mass fraction
2.1.8 Viscosity
2.2 Turbulence and modeling
2.2.1 Spatial discretization methods
2.2.2 Turbulence models
2.2.3 Direct numerical simulation (DNS)
2.2.4 Reynolds averaged Navier-Stokes Equations (RANS)
2.2.5 Large eddy simulation
2.3 Modeling of mixing in ANSYS CFX
2.3.1 Additional variable
2.3.2 Multi-component flow model
2.3.3 Two-phase flow model
2.4 Mixing in cross-junctions (available models)
2.4.1 Complete mixing model
2.4.2 Bulk advective mixing model (BAM)
2.4.3 BAM-Wrap mixing model
2.4.4 Shao mixing model
3 Experimental Study
3.1 Introduction
3.2 Description of the model network
3.3 Results and discussion
3.3.1 Turbulent flow experiments
3.3.2 Laminar flow experiments
3.3.3 The interpolation of the experimental results
3.4 Conclusion
4 3D Numerical Study using ANSYS CFX
4.1 Introduction to ANSYS CFX
4.1.1 Model setup in ANSYS CFX
4.1.2 Modeling of mixing in cross-junctions
4.2 Additional variable model
4.2.1 Application of Reynolds averaged Navier-Stokes simulation
4.2.2 Sensitivity analysis of URANS simulations
4.2.3 Application of the large eddy simulation
4.2.4 Summary
4.3 Multi-component flow model
4.3.1 Setup of the multi-component simulation model
4.3.2 Results and discussion
4.4 Summary
5 Mixing Model for Cross junction
5.1 Introduction
5.2 Parameter sensitivity Analysis
5.2.1 The influence of changing the Reynolds number
5.2.2 The influence of changing the pipe diameter
5.2.3 The influence of the inflow and outflow ratios
5.2.4 The influence of changing the tracer properties
5.2.5 The influence of the pipe roughness
5.3 Conceptual model for mixing in cross junction
6 Summary
7 Outlook
References
APPENDIX A
APPENDIX B
|
Page generated in 0.0852 seconds