• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 12
  • 12
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation objective de la localisation des déformations et de la fissuration des structures en béton soumises à des chargements statiques ou dynamiques / Objective modelisation of localized deformations and fracture in reinforced concrete structures

Giry, Cedric 10 November 2011 (has links)
Dans une problématique d'analyse de la durabilité des structures en béton armé, la quantification de la localisation des déformations et des propriétés des fissures sont deux points clés. Ce travail présente une méthode permettant, dans le cadre de la mécanique des milieux continus, d'améliorer la description de l'évolution de la localisation des déformations. En se basant sur une approche continue du problème, l'évolution des nonlinéarités dans le béton est décrite au travers d'un modèle d'endommagement régularisé. Pour améliorer la description de la localisation des déformations, une modification de la méthode de régularisation nonlocale intégrale sur les variables internes est proposée. L'influence de l'état de contrainte sur les interactions nonlocales est introduite dans la régularisation, afin de prendre en compte la dégradation de la structure ainsi que l'influence des conditions aux limites sur les interactions nonlocales. Cette méthode, implantée dans le code aux éléments finis Cast3M, est validée sur différents cas tests analysant l'évolution des nonlinéarités de l'enclenchement de l'endommagement jusqu'à la rupture et permet notamment de résoudre des pathologies identifiées pour la méthode nonlocale originale. La comparaison avec des résultats expérimentaux montre également la capacité du modèle à décrire l'évolution de la fissuration dans une structure. Le modèle développé est ensuite utilisé pour analyser le comportement de structures en béton armé et sert de base pour introduire une description de la fissuration dans une modélisation simplifiée de type poutre multifibre. A partir de calcul 3D sur des éléments en béton armé utilisant le modèle développé, une loi uniaxiale est identifiée pour déterminer la fissuration dans une fibre en fonction de l'énergie dissipée par le modèle d'endommagement. Une comparaison avec des résultats expérimentaux est effectuée et montre la capacité de cette approche simplifiée à estimer la fissuration. / For the durability analysis of reinforced concrete structures, the modelling of strain localization and the estimation of cracking properties are hot topics. This work introduces a method allowing, in the framework of continuous mechanics, to improve the description of the evolution of strain localization. Based on a continuous description of the problem, the evolution of nonlinearities in concrete is described with a regularized damage model. In order to improve the description of strain localization, a modification of the nonlocal integral regularization method is proposed. The influence of the stress state on the nonlocal interactions is introduced in the regularization method, in order to take into account the degradation of the structure (decrease of the bearing capacities) as well as the influence of free boundary conditions. This method, implemented in the finite element code Cast3M, is validated against several cases of study, by analyzing the evolution of nonlinearities from damage initiation up to failure. It allows solving several pathologies pointed out for the original nonlocal method. The comparison with experimental results shows also the capacity of the proposed model to describe the evolution of cracking in a structure. Then, the model developed is used to analyse the behaviour of reinforced concrete structures and to develop a method to quantify cracking in a multifiber beam element modelling. From 3D calculation on reinforced concrete element with the new nonlocal model developed, a uniaxial law is identified in order to estimate cracking as a function of the energy dissipated by the damage model. A comparison with experimental data is performed and shows the potentiality of this simplified approach to estimate cracking.
32

Évolution thermique et mécanique des zones de cisaillement : approche analytique, numérique et confrontation aux données de terrain / Thermal and mechanical evolution of shear zones : analytical and numerical approach, and comparison with the field data

Duprat-Oualid, Sylvia 12 December 2014 (has links)
Les zones de cisaillement constituent des objets structuraux communs de la lithosphère. À grande échelle, elles sont le siège principal des déplacements entre plaques tectoniques, accommodant de grandes quantités de déformation. La compréhension de leur comportement mécanique dans le temps et l'espace est donc essentielle pour la connaissance générale de la dynamique de la lithosphère. La température joue un rôle majeur sur la loi de comportement rhéologique qui caractérise le domaine ductile (en profondeur), réduisant alors efficacement la résistance mécanique. Chaque roche possède en outre des propriétés mécaniques intrinsèques qui varient en fonction de sa composition minéralogique, de sa texture et de sa structure interne. Or, en l'absence de grandeurs directement mesurables en profondeur, la rhéologie de la lithosphère demeure sujette à diverses interprétations. Le comportement mécanique des zones de cisaillement est d'autant plus méconnu qu'elles sont le siège d'intenses changements de la nature des roches et de perturbations thermiques majeures. En particulier, l'énergie mécanique qui y est convertie en chaleur (shear heating) peut engendrer une étroite interrelation entre thermique et mécanique. Ce travail de thèse vise à contribuer à la connaissance générale de la rhéologie des zones de cisaillement lithosphérique. Une approche originale a été mise en place, se basant sur l'évolution thermique aux abords et au sein des zones de cisaillement. Sur la base de modèles numériques thermo-cinématiques 2-D et de développements analytiques, la variabilité de premier ordre de l'évolution et de la perturbation thermique est analysée et quantifiée au regard de l'influence des trois processus thermiques majeurs que sont la diffusion, l'advection et le shear heating. Les résultats sont confrontés aux signatures thermiques métamorphiques associées aux chevauchements intra-continentaux pour lesquels les influences des processus d'accrétion et d'érosion sont également examinées. Le cas du Main Central Thrust (Himalaya), associé à une inversion thermique métamorphique bien développée, est pris comme exemple de référence. Nos résultats quantitatifs mettent en avant le rôle crucial du shear heating, notamment de la variabilité de la résistance mécanique des zones de cisaillement. L'accent est mis sur l'importance des paramètres de fluage des roches. L'étude de zones de cisaillement centimétriques développées au sein de la granodiorite du Zillertal (fenêtre des Tauern, Alpes) à la faveur de faibles variations de la composition minéralogique révèle l'extrême sensibilité de la rhéologie des roches ignées représentatives de la croûte continentale. Les conséquences de cette variabilité intense à petite échelle sont finalement discutées au regard des rhéologies classiquement considérées dans les modèles qui s'intéressent aux processus qui régissent la dynamique de la lithosphère. / Shear zones are common structural features in the lithosphere and occur at various scales (from microscopic to lithospheric). At the lithospheric scale, they concentrate most of the relative movements between tectonic plates, and therefore, accommodate a high amount of strain. Consequently, the understanding of both their spatial and temporal mechanical behaviour is crucial for the general knowledge of the lithosphe dynamics. Rheology of rocks, which define their mechanical behaviour, is controlled by physical laws that predict how they deform under some stresses. Temperature plays a major role in the creep-dislocation behaviour, which characterizes the ductile domain (in depth), decreasing efficiently the rock strength. Furthermore, each rock has intrinsic mechanical properties, which depend on its mineralogical composition, texture and internal structures. However, due to the lack of data directly measurable deeper than a few kilometres, the lithosphere rheology, and in particular the continental lithosphere remains subject to drastically different interpretations. The mechanical behaviour of major shear zones is not fully understood, as they are the location of intense changes of both the rock internal nature and major thermal perturbations. Especially, the mechanical energy, converted into heat (shear heating) causes a close interaction between thermal ad mechanical evolutions. This thesis aims to better understand the rheological state of lithospheric scale shear zones. For this purpose, we used an original approach, based on the temperature field evolution around and within such shear zones. From 2D numerical thermo-kinematic models and analytical developments, the first order variability of thermal evolution and perturbation is anal- ysed and quantified with respect to the impact of three major thermal processes, defined as diffusion, advection and shear heating. Results are compared to metamorphic thermal signatures associated to intra-continental thrust zones for which the influence of both accretion and erosion was also investigated. The case of the Main Central Thrust (MCT) in the Himalayas, whose the inverse metamorphic thermal zonation has been extensively studied, was chosen as the main natural analogue. Our quantitative results highlight the crucial role of shear heating, and more particularly of mechanical strength variability within shear zones. We thus emphasise on the importance of rock creep parameters. The study of centimetre-scale shear zones, which developed within the granodiorite of the Zillertal nappe (Tauern window, Tyrol, Alps) thanks to little local variations of the mineralogical composition, reveals the extreme sensitivity of igneous rocks rheology, representative of the continental crust. The consequences of such an intense variability, revealed at small scale are finally discussed with regard to rheologies usually considered in models that focus on processes controlling lithosphere dynamics.
33

Étude expérimentale et numérique de la localisation de la déformation dans un milieu granulaire / Experimental and numerical study of the localization of deformation in a granular material

Nguyen, Thai Binh 16 November 2017 (has links)
Les milieux granulaires sont très étudiés depuis des décennies mais la description de l'ensemble des comportements observés de ces matériaux reste une grande question ouverte. Lorsqu'ils sont soumis à une contrainte suffisamment importante, une caractéristique est de présenter de la localisation de la déformation. L'objectif du travail présenté dans ce mémoire est d'étudier expérimentalement et numériquement la déformation d'un milieu granulaire et de caractériser des comportements observés lors d'un text biaxial. La première partie est consacrée à la réalisation des tests biaxiaux en déformation plane. Pour pouvoir visualiser de très petites déformations, nous utilisons une méthode interférométrique basée sur la diffusion multiple de la lumière. La deuxième partie est dédiée à la modélisation numérique d'un test biaxial en 2D dans des conditions similaires à celles de l'expérience par la méthode des éléments discrets. Enfin, dans la dernière partie, des outils développés pour l'analyse d'images utilisés pour étudier aussi bien les expériences que les simulations numériques sont abordés. L'étude du champ plastique moyen dans les expériences montre que la localisation de la déformation est un processus progressif initié par une bifurcation qui correspond à l'apparition d'une direction bien définie. Cette direction est en accord avec l'angle de Mohr-Coulomb et son apparition a lieu avant la rupture du matériau. L'étude des fluctuations de la plasticité dans les expériences et les simulations numériques semble mettre en évidence une croissance d'une longueur caractéristique. / Granular materials have been studied for decades, but the description of the behaviors observed of these materials is still an open question. They display localization of deformation when submitted to a large enough stress. The objective of this work is to study experimentally and numerically the deformation of a granular material and to characterize observed behaviors in a biaxial text. The first part is devoted to the realization of plane strain biaxial tests. In order to visualize very small deformations, we use an interferometric method based on the multiple light scattering. The second part is devoted to the numerical modeling of a 2D biaxial test under conditions similar to those of the experiment by the discrete element method. Finally, in the last part, tools developed for the analysis of images used to study as well the experiences as the numerical simulations are approached. The study of the average plastic field in the experiments shows that the localization of the deformation is a progressive process initiated by a bifurcation which corresponds to the appearance of a well defined direction. This direction is in agreement with the angle of Mohr-Coulomb and its appearance takes place before the failure of the material. The study of the fluctuations of the plasticity in the experiments and the numerical simulations seems to show an increase of a characteristic length.
34

Étude expérimentale de la localisation de la déformation par corrélation d’images sur un analogue de roche soumis à différentes conditions de chargement triaxiaux / Experimental study of the strain localization by image correlation on a rock analogue material under different triaxial loading conditions

Tran, Thi Phuong Huyen 21 October 2016 (has links)
Ce travail présente une caractérisation expérimentale de la localisation de la déformation et la rupture sur un matériau synthétique analogue de la roche dans différentes conditions de chargement axisymétrique. L’évolution de la localisation de la déformation a été caractérisée par la technique de corrélation d’images bidimensionnelle. Deux gammes d’essais en compression et en extension ont été réalisées à différentes pressions de confinement Pc. Profitant de la technique DIC et de la caractérisation détaillée des propriétés constitutives de GRAM1 par Mas et Chemenda (2014; 2015), nous montrons que l'initiation de la localisation des bandes de déformation est précédée par la déformation élastique uniforme puis la déformation élasto-plastique. La localisation de la déformation est initiée dans le régime de dilatance (la dilatance β est positive) et d’adoucissement (le module d’écrouissage h est négatif). Au cours de l'évolution du chargement, la déformation à l'intérieur de la bande de localisation de la déformation devient compactive (β <0) et est accompagnée par un durcissement du matériau (h> 0). Ceci provoque dans un premier temps l’élargissement de la bande puis l’apparition de nouvelles bandes qui se forment successivement. La formation de ces nouvelles bandes provoque un ralentissement de la déformation dans les bandes préexistantes, ce qui densifie progressivement le réseau. Dans les essais en extension axisymétrique, les fractures se forment perpendiculaires à la contrainte principale mineure σ3 sous un état de contrainte extensif à faible Pc puis compressif quand Pc augmente. Nos résultats présentent une transition continue de la fracture extensive à la fracture cisaillante avec une augmentation de la contrainte compressive. Ceci est en accord avec les résultats obtenus pour les essais en extension réalisées sur des roches naturelles (Ramsey et Chester, 2004 ; Bobich 2005) / This work presents an experimental characterization of the strain localization and the rupture on a granular rock analogue material under different conditions of axisymmetric loading. The evolution of the strain localization was characterized by the two-dimensional image correlation technique. Two series of triaxial compression and extension tests were carried out at different confining pressure Pc. Taking advantage of the DIC technique and detailed characterization of GRAM1’s constitutive properties by Mas and Chemenda (2014, 2015), we show that the initiation of deformation localization bands is preceded by the uniform elastic and then elasto-plastic deformation. The strain localization is initiated in the dilatant regime (positive dilatancy factor β) and strain-softening (negative hardening modulus h). During the band evolution, the deformation within it becomes compactive (β<0) and is accompanied by the material hardening (h>0), which causes the band to widen and new bands to form successively. The formation of new bands causes a slowing down the deformation within the prior bands, which makes the progressively densified band network to continuously evolve. In axisymmetric extension tests, the fractures are formed perpendicular to the minor principal stress σ3 in an extensive stress state at low Pc then compressive when Pc increases. Our results show a continuous transition from the extensive fracture to shear fracture with an increase of compressive stress. This is suitable of the results obtained for extension tests performed on natural rocks (Ramsey and Chester, 2004; Bobich, 2005)
35

Modeling the Fatigue Response of Additively Manufactured Ti-6Al-4V with Prior BETA Boundaries Using Crystal Plasticity Finite Element Methods

Sidharth Gowtham Krishnamoorthi (13144860) 24 July 2022 (has links)
<p>With the emergence of additive manufacturing (AM), there is a need to understand the role of microstructures resulting from AM on the mechanical performance of the material. Ti-6Al-4V alloys are widely used within the aerospace industry as well as other industries to achieve high strength, low weight premium performance parts. There is a desire to utilize AM to produce Ti-6Al-4V, although these materials need to be qualified prior to their use in safety critical applications. Within the qualification of AM Ti-6Al-4V in aeronautics, fatigue loading is a crucial aspect to. It has been seen that within AM Ti-6Al-4V, prior β boundaries can be locations of microscopic localization of plastic strain which often lead to fatigue crack initiation. This thesis aims to further understand and predict the role of AM Ti-6Al-4V microstructures in dictating fatigue behavior. Specifically, the goal was to gauge the contributions of two microstructural features resulting from AM, prior β boundaries and α lathe-shaped grains, to the localization behavior. With the need to understand and predict the emergent behavior of the material system, crystal plasticity finite element (CPFE) methods were used in this thesis as the main method. </p> <p><br></p> <p>Within the context of CPFE, there is an existing gap in the current literature of realistic synthetic microstructures of Ti-6Al-4V that capture both the prior β boundaries and α lathes. With the ability to generate realistic FE models, the effects of the microstructural features can be better studied and characterized. The first portion of this thesis focuses on the generation of such synthetic microstructures which are simulated within the CPFE framework. An emphasis is placed on modeling the prior β boundaries and α grains. As these generated models are statistically equivalent to actual microstructures, material characterization via EBSD was performed on specimen that were used in the experimental fatigue testing. With the framework’s ability to generate synthetic microstructures that consider one prior β grain or multiple β grains (and thus prior β boundaries), simulations were conducted on both conditions of microstructures. </p> <p><br></p> <p>In the second portion of this thesis, simulations are conducted on two conditions of synthetic microstructures: models which contain 𝛼 lathes associated with one prior 𝛽 grain and models which contain multiple prior 𝛽 boundaries and the respective 𝛼 lathes. The goals of the simulations included: (1) lifing the different synthetic microstructures using a fatigue lifing model by way of the accumulated plastic strain energy density (APSED), (2) analyzing the microscopic localization of APSED at the prior β boundaries, and (3) analyzing the effects of the α lathes on the microscopic localization. This investigation aimed to further shed light on the effects of the additive manufacturing process and the implications of the resulting microstructure on the fatigue properties of AM Ti-6Al-4V. Furthermore, physics-based prognosis strategies similar to what is employed here will enable the rapid qualification of materials/structures and the ability to tailor component design on fatigue performance. </p>
36

Performance and Design of Extruded Fiber-Reinforced Mortar with Preferentially Aligned Fibers

Alarrak, Rashed 03 May 2024 (has links)
This dissertation presents a comprehensive investigation into the mechanical properties of fiber-reinforced concrete (FRC), focusing on fracture and flexural toughness properties, the impact of fiber orientation and distribution, and the evaluation of flexural models for predicting the behavior of functionally graded FRC. It embarks on a critical investigation aimed at bridging a significant gap in the understanding of FRC materials' behavior, particularly in terms of fracture and flexural performance. Across five distinct manuscripts, this work employs a variety of experimental methodologies, including three-point bend tests, four-point bend tests, digital image correlation, X-ray computed tomography, and the implementation of the two parameter fracture model and then size effect fracture method to explore the effects of different casting techniques – namely, conventional casting and pump-driven extrusion – on the performance of FRC. The core hypothesis tested throughout these studies suggests that the extrusion process, by aligning fibers parallel to tensile stresses, significantly enhances the concrete's ductility, post-peak behavior, and overall fracture and flexural properties. This hypothesis was corroborated across various experiments, which demonstrated that fiber alignment via extrusion not only enhances the concrete's mechanical properties but also leads to more effective crack propagation control, increased toughness, and enhanced residual strengths. The research encompasses a series of systematic investigations into the effects of fiber alignment on the mechanical properties of FRC, revealing that the extrusion process significantly enhances fracture and flexural properties and maintains residual strength after peak stress. Utilizing both extrusion-based and conventional casting methods with varying dosages of polyvinyl alcohol fibers, the study demonstrates notable improvements in fracture properties, deflection at failure, and equivalent flexural strength ratio for extrusion-based specimens compared to their conventionally cast counterparts. Moreover, the dissertation explores the impact of casting methods and fiber orientation on fracture energy, offering a size-dependent improvement in extrusion-based methods. The strategic distribution of steel fibers, employing an innovative targeted fiber injection for creating Functionally Graded FRC (FG-FRC), is shown to significantly enhance the structural integrity and resilience of the material. The analysis of flexural models applied to FG-FRC specimens, proposing a novel functionally graded factor to improve model predictability, further advances the understanding of the predictability and reliability of these models in assessing FRC's structural behavior. This dissertation advances academic knowledge in the field of FRC casting and offers significant implications for the construction industry, demonstrating a profound understanding of the challenges and opportunities in extrusion-based FRC casting. Through its innovative approach and detailed investigations, this work contributes significantly to the advancement of the FRC casting field, paving the way for the development of more resilient and efficient construction materials. / Doctor of Philosophy / This research explores the enhancement of concrete's strength and flexibility through the incorporation of individual fibers, with a special focus on the integration and alignment of these fibers. The study examines how concrete can be made more resilient by mixing in fibers in specific ways. A variety of tests, including bending beams and employing advanced imaging techniques, were conducted to observe the effects of mixing fibers using traditional methods versus a novel extrusion-based technique that aligns the fibers in the desired direction in the concrete. The research hypothesized that this innovative alignment method would improve the concrete's ductility and enhance its ability to resist crack propagation. The findings confirmed this hypothesis, revealing that aligned fibers significantly improve concrete's bending capacity, reduce sensitivity to cracking, and retain residual strength even after cracking. Further investigation into varying methods of fiber addition, such as a targeted approach for placing fibers in strategic locations, demonstrated a marked enhancement in the material's ductility. Additionally, the study evaluated mathematical models for predicting the behavior of fiber-reinforced concrete, aiming to improve the understanding and reliability of these models for practical construction applications. In short, the research underscores that adjusting the method of fiber integration into concrete can lead to the development of structures that are both stronger and more durable. This advancement holds promising implications for the future of construction, offering pathways to create more resilient and efficient building materials.
37

Développement d’une stratégie d’implémentation numérique pour milieu continu poreux de 2nd gradient basée sur les éléments finis isogéométriques, application à un milieu partiellement saturé / Development of a Numerical Strategy for 2nd Gradient Continuum Porous Media based on Iso-Geometric Finite Element. Application to Partially Saturated Media

PLúA, Carlos 05 March 2018 (has links)
Au cours de la dernière décennie, la méthode d’analyse isogéométrique (AIG) a attiré l’attention des chercheurs grâce à ses capacités supérieures à la méthode standard des éléments finis (MEF). Le concept AIG utilise les mêmes fonctions de base que celles utilisées dans la conception assistée par ordinateur (CAO) pour l’approximation des champs inconnus tels que les déplacements, pression interstitielle ou la température dans la solution des éléments finis d’un problème thermo–hydro–mécanique (éventuellement couplé). Parmi les caractéristiques les plus importantes d’AIG, la régularité, le taux de convergence et surtout sa continuité intrinsèque d’ordre supérieur représentent une nette amélioration par rapport à la méthode standard des éléments finis, permettant d’obtenir des avantages computationnels significatifs en termes de précision de la solution et de efficacité.Ce travail tente d’exploiter les caractéristiques d’AIG pour la résolution numérique des problèmes hydromécaniques (HM) couplés dans les géomatériaux de second gradient de type poro–élastoplastiques partiellement saturés. D’une part, le modèle second gradient appartenant à la théorie des milieux continus avec microstructure assure l’objectivité des résultats en présence de phénomènes de localisation de la déformation en termes d’indépendance de maillage de la solution numérique, ce qui ne peut être réalisé avec des modèles constitutifs classiques qui n’implique pas l’intervention d’une longueur interne. D’autre part, la continuité C1 réalisable au moyen de fonctions de base AIG permet une implémentation directe de tels modèles constitutifs d’ordre supérieur, dans une formulation HM dérivée de l’approche de mélange classique. De plus, la régularité des fonctions de base AIG s’est révélée très efficace dans la modélisation de processus couplés caractérisés par de forts gradients hydrauliques – comme la simulation de la propagation d’un front de saturation dans une pente partiellement saturée. Dernier point, mais non des moindres, il convient de noter que, par rapport aux approches existantes basées sur les multiplicateurs de Lagrange, la méthode AIG pour résoudre les problèmes hydromécaniques (HM) couplés dans les matériaux du second gradient saturé et partiellement saturé permet une réduction considérable du nombre de degrés de libertés requis pour atteindre le même niveau de précision. Cela entraîne non seulement une augmentation significative de l’efficacité de calcul, mais permet également d’étendre la formulation du second gradient à l’analyse de problèmes réalistes en 3D, dont la solution a été présentée pour la première fois dans ce travail.La formulation poro–élastoplastique du second gradient développée dans ce travail est mise en œuvre dans le code orienté vers la recherche GeoPDEs, un code IAG–MEF open source écrit en Matlab et développé à l’Université de Pavia. Sur la base des résultats obtenus dans une large série de problèmes aux limites en 2D et 3D analysées dans ce travail, on peut conclure que la combinaison de AIG et d’élastoplasticité du second gradient représente un outil puissant pour la simulation numérique de problèmes géotechniques caractérisés par de forts couplages multiphysiques, un comportement fortement non linéaire du sol, et des gradients de déplacement et de pression interstitielle fortement localisés. / During the last decade, Isogeometric Analysis (IGA) has drawn the attention of the Finite Element community to its superior capabilities over the standard Finite Element Method (FEM). The IGA concept uses the same basis functions used in Computed Aided Design (CAD) for the approximation of the unknown fields such as displacements, pore pressure or temperature in the Finite Element solution of a (possibly coupled) thermo– hydro–mechanical problem. Among the most relevant features of IGA, its smoothness, its convergence rate and particularly its intrinsic higher–order continuity between elements represent a definite improvement over the standard FEM, which allow to obtain significant computational advantages in terms of accuracy of the solution and computa- tional efficiency.This work attempts to exploit the characteristics of IGA for the numerical solution of coupled hydro–mechanical (HM) problems in saturated and partially saturated second gradient poro–elastoplastic geomaterials. On one hand, the second gradient model belonging to the theory of continua with microstructure ensures the objectivity of the results in presence of strain localization phenomena in terms of mesh independence of the numerical solution, which cannot be achieved with classical constitutive models without an internal length scale. On the other hand, the C1–continuity achievable by means of IGA basis functions allows a straightforward implementation of such higher order constitutive models, within a HM formulation derived from the classical mixture approach. In addition, the smoothness of the IGA basis functions proved to be very efficient in the modeling of coupled processes characterized by strong hydraulic gradients – such as the simulation of the downward propagation of a saturation front in a partially saturated slope subject to rainfall infiltration. Last but not least, it is worth noting that, as compared to the existing approaches based on Lagrange multipliers, the IGA approach to the solution of coupled hydro-mechanical (HM) problems in saturated and partially saturated second gradient materials allows a dramatic reduction in the number of degrees of freedoms required to achieve the same level of accuracy. This not only results in a significant increase of the computational efficiency, but also allows to extend the complete second gradient formulation to the analysis of realistic 3D problems, the solution of which has been presented in this work for the first time.The local second gradient poro–elastoplastic formulation developed in this work is implemented in the research-oriented code GeoPDEs, a Matlab open source IGA–FEM code developed at the University of Pavia. Based on the results obtained in a large series of representative 2D and 3D initial–boundary value problems analyzed in this work, it can be concluded that the combination of IGA and the second gradient elastoplasticity represents a powerful tool for the numerical simulation of geotechnical problems characterized by strong multiphysics couplings, highly nonlinear behavior of the soil, and strongly localized displacement and pore pressure gradients.
38

Modélisation multi-échelle du comportement hydro-méchanique des roches argileuses / Multi-scale modelling of the hydro-mechanical behaviour of argillaceuous rocks

Van Den Eijnden, Bram 13 July 2015 (has links)
Les études de faisabilité concernant le stockage géologique profond des déchets radioactifs ont conduit un intérêt accru concernant la modélisation géomécanique de la roche hte. En France, une roche hte potentielle est l'argilite du Callovo-Oxfordien du site de Meuse/Haute Marne. Etant donné que le principe de stockage géologique profond repose fortement sur la capacité de confinement de la formation hte, sa faible perméabilité est d'une importance clé. La perméabilité étant dépendante de la microstructure du matériau et de son évolution sous chargement, le comportement couplé hydro-mécanique de l'argilite est important. En effet, des modifications mécaniques sont induites par le creusement de la galerie d'entreposage, générant une zone endommagée (EDZ), pouvant conduire une modification de la perméabilité dans le voisinage de la galerie. Dans les matériaux microstructure complexe comme l'argilite du Callovo-Oxfordien, le comportement macroscopique trouve son origine dans l'interaction des constituants micro-mécaniques. En plus du couplage entre le comportement hydraulique et mécanique, un couplage entre les échelles micro et macro existe. Par le biais de l'élaboration d'un cadre d'homogénéisation du couplage hydro-mécanique, une approche de modélisation deuxéchelles est développée dans ce travail, dans laquelle la relation constitutive macroscopique découle directement du comportement à l'échelle microscopique. Un modèle existant du couplage hydro-mécanique, reposant sur l'identification de grains et d'espaces poreux intergranulaires à l'échelle micro est adopté comme point de départ. Ce modèle repose sur une homogénéisation numérique du comportement à la petite échelle afin d'obtenir à l'échelle macroscopique la réponse en contrainte et de transport du fluide interstitiel. Ce modèle est basé sur un VER périodique qui permet de déduire le comportement macroscopique local de l'argilite. En réponse, en un point d'intégration macro donné, à un incrément de la déformation et du gradient de pression, la réponse du VER permet d'exprimer l'incrément de contrainte et de flux associé, constituant de fait un équivalent numérique de la relation constitutive. Les problèmes aux conditions limites macro et micro sont traités simultanément par la méthode élément fini. Pour obtenir les opérateurs tangents consistants à l'échelle macro, la méthode d'homogénéisation par condensation statique des opérateurs tangeants micro est étendu au cas avec couplage hydro-mécanique. L'implémentation du modèle double échelle et la mise en uvre des développements théoriques d'homogénéisation ont été effectués dans le code élément fini Lagamine (Université de Liège). Pour la modélisation de la localisation de la déformation à l'échelle macro, qui, dans un formalisme de milieu continu classique, souffre de la dépendance au maillage, l'approche double-échelle a été utilisée dans un formalisme de milieu enrichi de type milieu de second gradient pour matériau poreux saturé. Les capacités du modèle homogénéisé numériquement, utilisé dans un cadre de milieu de second gradient, sont ensuite démontrées par des simulations d'essais dométriques et d'essais de compression biaxiaux. L'approche se confirme être un moyen puissant pour modéliser l'anisotropie initiale et induite du comportement mécanique et du comportement hydraulique. Pour la modélisation du comportement de l'argilite du Callovo-Oxfordien, des VER sont construits en tenant compte des travaux de caractérisation de la géométrie des inclusions microscopiques et des résultats expérimentaux d'essais macroscopiques.La loi de comportement homogénéisée numériquement ainsi calibrée est utilisée dans des simulations de creusement de galerie jusqu'à des niveaux d'endommagement générant une localisation de la déformation.Ces calculs montrent à la fois la pertinence et l'applicabilité du concept double échelle pour l'évaluation du comportement hydromécanique des EDZ dans un contexte du stockage des déchets radioactifs. / Feasibility studies for deep geological radioactive waste disposal facilities have led to an increased interest in the geomechanical modelling of its host rock. In France, a potential host rock is the Callovo-Oxfordian claystone. The low permeability of this material is of key importance, as the principal of deep geological disposal strongly relies on the sealing capacity of the host formation. The permeability being coupled to the mechanical material state, hydromechanical coupled behaviour of the claystone becomes important when mechanical alterations are induced by gallery excavation in the so-called excavation damaged zone (EDZ). In materials with microstructure such as the Callovo-Oxfordian claystone [Robinet et al., 2012], the macroscopic behaviour has its origin in the interaction of its mi- cromechanical constituents. In addition to the coupling between hydraulic and mech- anical behaviour, a coupling between the micro (material microstructure) and macro will be made. By means of the development of a framework of computational homo- genization for hydromechanical coupling, a doublescale modelling approach is formu- lated, for which the macroscale constitutive relations are derived from the microscale by homogenization. An existing model for the modelling of hydromechanical coupling based on the distinct definition of grains and intergranular pore space [Frey, 2010] is adopted and modified to enable the application of first order computational homogenization for obtaining macroscale stress and fluid transport responses. This model is used to constitute a periodic representative elementary volume (REV) that allows the rep- resentation of the local macroscopic behaviour of the claystone. As a response to deformation loading, the behaviour of the REV represents the numerical equivalent of a constitutive relation at the macroscale. For the required consistent tangent operators, the framework of computational homogenization by static condensation [Kouznetsova et al., 2001] is extended to hy- dromechanical coupling. The theoretical developments of this extension are imple- mented in the finite element code Lagamine (Li` ege) as an independent constitutive relation. For the modelling of localization of deformation, which in classical FE meth- ods suffers from the well-known mesh dependency, the doublescale approach of hy- dromechanical coupling is combined with a local second gradient model [Collin et al., 2006] to control the internal length scale of localized deformation. By accepting the periodic boundary conditions as a regularization of the microscale deformation, the use of the multiscale model in combination with the local second gradient model can be used for modelling localization phenomena in HM-coupled settings with material softening. The modelling capacities of the approach are demonstrated by means of simula- tions of oedometer tests and biaxial compression tests. The approach is demonstrated to be a powerful way to model anisotropy in the mechanical as well as the hydraulic behaviour of the material both in the initial material state and as an effect of hy- dromechanical alterations. For the application to the modelling of Callovo-Oxfordian claystone, microstructural REVs are calibrated to geometrical characteristics of the inclusion that form the microstructure under consideration and to macroscale ex- perimental results of the mechanical behaviour. The calibrated constitutive relation is used in the simulation of gallery excavation processes. These computations give a proof of concept of the doublescale assessment of the hydromechanical behaviour of the excavation damaged zones around galleries in the context of nuclear waste disposal.
39

Full-field experimental characterization of mechanical behaviour and failure in a porous rock in plane strain compression : homogeneous deformation and strain localization / Caractérisation expérimentale par mesure des champs du comportement mécanique et de la rupture dans une roche poreuse en déformation plane : déformation homogène et localisation de la déformation

Lanata, Patrizia 02 April 2015 (has links)
Ce travail présente une caractérisation expérimentale du comportement mécanique et de la rupture par localisation de la déformation dans un grès des Vosges. L'évolution temporelle de la localisation a été caractérisée par des mesures de champs. Une nouvelle cellule triaxiale vraie a été développée au Laboratoire 3SR (Grenoble), qui permet une visualisation des échantillons sous chargement pour réaliser de la corrélation d'image numérique (CIN). Les essais ont été réalisés par compression en déformation plane (confinement de 20 à 50 MPa). La transition d'une déformation diffuse à localisée a été finement étudiée. Une analyse comparative a été ensuite effectuée entre les mesures de champs et la microstructure à l'échelle des grains observée par microscope (MEB). Enfin, une étude théorique basée sur une analyse en bifurcation a été menée pour comparer observations des bandes de cisaillement et prédiction sur la localisation de la déformation. / This work aims an experimental characterization of the mechanical behaviour and failure by strain localization on a Vosges sandstone. The time evolution of strain localization has been characterized by full-field measurements. A new true-triaxial apparatus has been developed at Laboratoire 3SR (Grenoble), which enables the observation of the specimens during mechanical loading for application of digital image correlation (DIC). Tests have been performed in plane strain compression (confining pressure from 20 to 50 MPa). The transition from diffuse to localised deformation regimes has been extensively studied. Then, a comparative analysis has been done between the strain fields (DIC) and microscope (SEM) observations to determine how closely the DIC fields are related to deformation mechanisms detected at the grain scale. Finally, a theoretical bifurcation analysis is presented to compare the experimental observations of shear bands with strain localization prediction.
40

Homogenization of periodic lattice materials for wave propagation, localization, and bifurcation

Bordiga, Giovanni 29 April 2020 (has links)
The static and dynamic response of lattice materials is investigated to disclose and control the connection between microstructure and effective behavior. The analytical methods developed in the thesis aim at providing a new understanding of material instabilities and strain localizations as well as effective tools for controlling wave propagation in lattice structures. The time-harmonic dynamics of arbitrary beam lattices, deforming flexurally and axially in a plane, is formulated analytically to analyze the influence of the mechanical parameters on the dispersion properties of the spectrum of Floquet-Bloch waves. Several forms of dynamic localizations are shown to occur for in-plane wave propagation of grid-like elastic lattices. It is demonstrated that lattices of rods, despite being `simple' structures, can exhibit a completely different channeled response depending on the characteristics of the forcing source (i.e. frequency and direction) as well as on the slenderness of the elastic links. It is also shown how the lattice parameters can be tuned to attain specific dispersion properties, such as flat bands and sharp Dirac cones. In the research field of material instabilities, a key result proposed in this thesis is the development of both static and dynamic homogenization methods capable of accounting for second-order effects in the macroscopic response of prestressed lattices. These methods, the former based on an incremental strain-energy equivalence and the latter based on the asymptotic analysis of lattice waves, allow the identification of the incremental constitutive operator capturing the macroscopic incremental response of arbitrary lattice configurations. The homogenization framework has allowed the systematic analysis of prestress-induced phenomena on the incremental response of both the lattice structure and its `effective' elastic solid, which in turn has enabled the identification of the complex interplay between microstructure, prestress, loss of ellipticity (shear band formation) and short-wavelength bifurcations. Potential new applications for the control of wave propagation are also shown to be possible by leveraging the inclusion of second-order terms in the incremental dynamics. In particular, the tunability of the prestress state in a square lattice structure has been exploited to obtain dynamic interfaces with designable transmission properties. The interface can be introduced in a material domain by selectively prestressing the desired set of ligaments and the prestress level can be tuned to achieve total reflection, negative refraction, and wave channeling. The obtained results open new possibilities for the realization of engineered materials endowed with a desired constitutive response, as well as to enable the identification of novel dynamic material instabilities.

Page generated in 0.0931 seconds