• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 85
  • 40
  • 25
  • 21
  • 15
  • 13
  • 11
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 424
  • 150
  • 128
  • 57
  • 52
  • 44
  • 44
  • 43
  • 42
  • 41
  • 41
  • 40
  • 39
  • 39
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Creep modelling of particle strengthened steels

Magnusson, Hans January 2007 (has links)
Materials to be used in thermal power plants have to resist creep deformation for time periods up to 30 years. The role of alloying elements for creep strength of 9-12% Cr steels is analysed. The creep strength in these steels relies on minor additions of alloying elements. Precipitates give rise to the main strengthening and remaining elements produce solid solution hardening. Nucleation, growth and coarsening of particles are predicted by thermodynamic modelling. Phase fractions and size distributions of M23C6 carbides, MX carbonitrides and Laves phase are presented. The size distributions are needed in order to determine the particle hardening during creep. At elevated temperatures the climb mobility is so high that the dislocations can climb across particles instead of passing by making Orowan loops. By solving Fick's second law the concentration profile around a moving dislocation can be determined. The results show an accumulation of solutes around the dislocation that slows down dislocation movement. When Laves phase grows a decrease in creep strength is observed due to a larger loss in solid solution hardening than strength increase by particle hardening. Solid solution hardening also gives an explanation of the low dislocation climb mobility in 9-12% Cr steels. Three different dislocation types are distinguished, free dislocations, immobile dislocation and immobile boundary dislocations. This distinction between types of dislocations is essential in understanding the decreasing creep with strain during primary creep. The empirical relation with subgrain size inversely proportional to stress has been possible to predict. The total creep strength can be predicted by adding the contribution from individual mechanisms. / QC 20101112
162

Solid solution strengthening and texture evolution in Mg-Y alloys

JIA, XIAOHUI 10 1900 (has links)
<p>Tension and compression experiments have been carried out on a series of Mg-Y alloys with Y content up to 1.3 at.%, in a range of temperatures between 4.2K and 298K, to study the effect of Yttrium on mechanical properties and strain hardening. The alloys show strong difference in the hardening behavior under tension and compression attributed to the effect of texture. The yield strength scales with concentration of the solute as c<sup>n</sup>, where c is the concentration of the solute in atomic percent and n~2/3. The results suggest that in addition to the atomic size and modulus misfit effects, the valence may be responsible for the enhanced strengthening of Y in Mg. Strain rate sensitivity measurements carried out under tension and compression reveal that Mg-Y alloys show decreasing SRS with increasing Y content at 298K and exhibit a negative SRS in highly concentrated alloys. At low temperatures the alloys show positive SRS increased with Y content. Texture measurements suggest that increasing Y content in alloys decreases the amount of basal component and enhances non-basal orientations. The reduced yield asymmetry between tension and compression observed in higher Y content alloys is being attributed to the weakening of the basal texture.</p> / Master of Applied Science (MASc)
163

Phase-field simulations of the precipitation kinetics and microstructure development in nickel-based superalloys

Yenusah, Caleb O 13 May 2022 (has links)
The continual research and development of nickel-based superalloys is driven by the global demand to improve efficiency and reduce emissions in the aerospace and power generation industries. Integrated Computational Material Engineering (ICME) is a valuable tool for reducing the cost, time, and resources necessary for the development and optimization of the mechanical properties of materials. In this work, an ICME approach for understanding the microstructure development and optimizing the mechanical properties in nickel-based superalloys is employed. Most nickel-based superalloys are precipitate strengthened by either the γ’ phase, γ” phase, or both. Therefore, understanding the precipitation kinetics and morphological evolution of these phases is critical for evaluating their hardening effects during heat treatment and degradation of the microstructure during high temperature service. To this end, a phase-field model has been developed to analyze the nucleation, growth and coarsening kinetics during isothermal and non-isothermal aging conditions. Utilizing the phase-field model, the γ” phase microstructure development and its coherency strengthening effect in Inconel 625 is studied. A novel multistage aging strategy to optimize the γ” phase strengthening effect and reduce aging times for Inconel 625 is proposed. Secondly, the coarsening kinetic and microstructure development of γ’ strengthening phase in nickel-based superalloys is studied, with the goal of understanding the effect of elastic inhomogeneity on the microstructure evolution at high volume fractions of the γ’ phase. The result shows deviation of the coarsening kinetics from the classical Lifshitz-Slyozov-Wagner (LSW) due to the effect of elastic inhomogeneity, highlighting the need for incorporating elastic energy into coarsening theories.
164

Nature of serration behavior in high-Mn austenitic steel / 高Mn鋼のセレーション挙動の本質

Hwang, Suk Young 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23156号 / 工博第4800号 / 新制||工||1750(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 奥田 浩司, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
165

Microstructure and mechanical properties of face-centered cubic high/medium entropy alloys:From a viewpoint of heterogeneity on atomic-scale / FCC構造を有する高・中工ントロピー合金の材料組織と力学特性:原子スケールの不均一性の観点から

Yoshida, Shuhei 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23157号 / 工博第4801号 / 新制||工||1751(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 乾 晴行, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
166

Effects of grain size and Mg contents on deformation behavior and strengthening mechanisms in Al-Mg alloys / Al-Mg合金の変形挙動に及ぼす結晶粒径およびMg量の影響とその変形機構

Lan, Xiaodong 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23195号 / 工博第4839号 / 新制||工||1756(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 奥田 浩司, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
167

Shear strengthening of continuous reinforced concrete T-beams using wire rope units

Yang, Keun-Hyeok, Byun, H-Y., Ashour, Ashraf January 2009 (has links)
A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is presented. Ten two-span reinforced concrete T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested to failure, to explore the significance and shortcomings of the developed unbonded-type shear strengthening technique. The main parameters investigated were the type, amount and prestressing force of wire rope units. All beams tested failed, owing to significant diagonal cracks within the interior shear span. However, beams strengthened with closed type wire rope units exhibited more ductile failure than the unstrengthened, control beam or those strengthened with U-type wire rope units. The diagonal cracking load and ultimate shear capacity of beams with closed-type were linearly increased with the increase of vertical confinement stresses in concrete owing to the prestressing force in wire rope units, while those of beams with U-type were minimally influenced. It was also observed that average stresses in closed-type wire ropes crossing diagonal cracks at ultimate strength of beams tested were much higher than those in U-type wire ropes, showing better utilization in the former case. The shear capacity of beams with closed-type wire rope units is conservatively predicted using the equations of ACI 318-05, modified to account for the external wire rope units. A mechanism analysis based on the upper bound approach of the plasticity theory is also developed to assess the load capacity of beams tested. The predictions by the mechanism analysis for beams with closed-type wire rope units are in good agreement with test results and showed a coefficient of variation slightly less than the modified ACI 318-05 equations. However, the modified ACI 318-05 equations are more conservative and simpler to use for design purposes.
168

Understanding Ferroelastic Domain Reorientation as a Damping Mechanism in Ferroelectric Reinforced Metal Matrix Composites

Poquette, Ben David 09 October 2007 (has links)
Ferroelectric-reinforced metal matrix composites (FR-MMCs) offer the potential to improve damping characteristics of structural materials. Many structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. The damping behavior of two FR-MMC systems has been examined. One involved the incorporation of barium titanate (BaTiO3) particles into a Cu- 10w%Sn (bearing bronze) matrix and the other incorporating them into an electroformed Ni matrix. Here the damping properties of the resulting ferroelectric reinforced metal matrix composites (FR-MMCs) have been investigated versus frequency, temperature (above and below the Curie temperature of the reinforcement), and number of strain cycles. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. Dynamic mechanical analysis and neutron diffraction have shown that much of this added damping ability can be attributed to the ferroelectric/ferroelastic nature of the reinforcement. / Ph. D.
169

Torsionsversuche an carbonbetonverstärkten Plattenbalken mit neuen Carbonbewehrungssystemen: Experimentelle und analytische Betrachtungen

Müller, Egbert 09 December 2021 (has links)
Der Baufortschritt in Deutschland und global betrachtet ist immens. Es werden jedoch nicht nur Neubauwerke errichtet, sondern auch immer mehr Tragstrukturen erhalten. Die Gründe dafür können vielfältig sein. Um jedoch Bauwerke nachträglich zu verstärken, müssen die Tragmechanismen des Verstärkungsmaterials gut erforscht und verstanden sein, bevor es auf dem Markt angewendet werden kann. In dieser Arbeit sind Versuche zur Beschreibung des Torsionstragverhaltens carbonbetonverstärkter Plattenbalken durchgeführt worden. Es wird zunächst in gebotener Kürze der Stand des Wissens zusammengefasst. Anschließend werden das Versuchsprogramm und die Probekörper inklusive der Materialkennwerte vorgestellt. Neben einer ausführlichen Beschreibung der Torsionsmomenten-Verwindungs-Beziehungen, der Dehnungsverteilungen im Zustand I und Zustand II sowie den Rissabständen und Risswinkeln wird eine Möglichkeit gezeigt, das einwirkende Torsionsmoment anhand der gemessenen Materialkennwerte zum Betrachtungszeitpunkt bei erreichter Maximallast zu bestimmen und somit Informationen über die vorhandene Kräfteverteilung der Druck- bzw. Zugstreben zu erhalten. Die durchgeführten Versuche stellen nur einen Bruchteil der notwendigen Untersuchungen dar, um das Tragverhalten von carbonbetonverstärkten Bauteilen auf Torsionsbeanspruchung beispielsweise in einer Richtlinie zu regeln. Sie bieten jedoch einen Anfang. Es wäre interessant zu erfahren, ob bei Plattenbalken mit abweichender Geometrie ein vergleichbares Tragverhalten beobachtet werden kann. Zudem wäre ausführlich die Verankerungsmöglichkeit der Carbonbewehrung im Torsionsfall zu untersuchen, da mit den momentan verfügbaren Bewehrungsmatten bei Plattenbalken teilweise nur bündige Stöße möglich sind. Trotz dieser konstruktiven Mängel ist dennoch eine Tragfähigkeitssteigerung möglich, die nicht nur mit der aufgebrachten Feinbetonschicht zu erklären ist.:Inhaltsverzeichnis ........................................................................................................................... I Symbolverzeichnis ........................................................................................................................ III Abbildungsverzeichnis ................................................................................................................. VII Tabellenverzeichnis ...................................................................................................................... XI 1 Einleitung ................................................................................................................................. 1 1.1 Ausgangslage ................................................................................................................... 1 1.2 Zielsetzung und Aufbau der Arbeit ................................................................................ 3 1.3 Abgrenzung ...................................................................................................................... 3 2 Stand des Wissens................................................................................................................... 5 2.1 Stahl- und Carbonbeton im Überblick ........................................................................... 5 2.1.1 Die Anfänge in Deutschland .................................................................................... 5 2.1.2 Werkstoffverhalten des Betons und der Stahl- und Carbonbewehrung ............ 9 2.1.3 Verbund- und Tragverhalten von Stahl- und Carbonbeton ............................... 13 2.2 Torsion ........................................................................................................................... 17 2.2.1 Durchgeführte Untersuchungen seit 2011 .......................................................... 17 2.2.2 Tragverhalten von torsionsbeanspruchten Stahlbetonbauteilen ..................... 19 2.2.3 Berechnungsmodelle zur Bestimmung der Torsionstragfähigkeit .................... 21 3 Versuchsprogramm .............................................................................................................. 33 3.1 Torsionsbeanspruchte Plattenbalken ......................................................................... 33 3.2 Kleinteilige Standardtests ............................................................................................. 34 4 Probekörper........................................................................................................................... 37 4.1 Eigenschaften und Abmessungen ............................................................................... 37 4.1.1 Plattenbalken für Torsionsversuche .................................................................... 37 4.1.2 Kritik am Versuchskörper ...................................................................................... 39 4.2 Materialien ..................................................................................................................... 40 4.2.1 Beton- und Stahlkennwerte – Plattenbalken ....................................................... 40 4.2.2 Carbonbewehrung ................................................................................................. 40 4.3 Herstellung .................................................................................................................... 41 4.3.1 Plattenbalken für Torsionsversuche .................................................................... 41 4.3.2 Bauteilverstärkung ................................................................................................. 42 4.4 Routine- und Begleitprobekörper ................................................................................ 42 5 Experimentelle Untersuchungen ......................................................................................... 45 5.1 Variante I des Torsionsversuchsstandes ..................................................................... 45 5.2 Variante II des Torsionsversuchsstandes .................................................................... 47 5.3 Versuchsdurchführung ................................................................................................. 49 5.4 Messtechnik ................................................................................................................... 50 6 Versuchsergebnisse .............................................................................................................. 55 6.1 Routine- und Begleitprobekörper ............................................................................... 55 6.2 Ergebnisse der auf Torsion verstärkten Plattenbalken ............................................. 57 6.2.1 Einleitung einer Vorschädigung in die Plattenbalken ......................................... 57 6.2.2 Ergebnisse der Plattenbalkenversuche – Torsions-Verwindung-Verhalten ...... 59 6.2.3 Ergebnisse der Plattenbalkenversuche – Dehnungen ε ..................................... 70 6.2.4 Ergebnisse der Plattenbalkenversuche – Rissabstände und -winkel ................ 77 6.2.5 Ergebnisse der Plattenbalkenversuche – Torsionssteifigkeit-Verhalten ........... 83 6.3 Gegenüberstellung der Versuchsergebnisse nach Versagensfall ............................. 84 7 Nachrechnung der Plattenbalkenversuche ........................................................................ 87 7.1 Überprüfung der Ansätze von Schladitz ..................................................................... 87 7.1.1 Berechnung des Erstrissmomentes der Probekörper ........................................ 87 7.1.2 Berechnung des Zustands II der unverstärkten Probekörper nach EC 2 [34] .. 89 7.1.3 Berechnung der Tragfähigkeit der verstärkten Probekörper im Zustand II nach Schladitz [95] ......................................................................................................................... 91 7.1.4 Verwindungen im Zustand I und Zustand II ........................................................ 94 7.2 Erweiterung der Ansätze von Schladitz [95] ............................................................... 97 7.2.1 Nachrechnung des Erstrissmoments eines carbonbetonverstärkten Plattenbalkens ....................................................................................................................... 97 7.2.2 Modifizierten Ansatz im Zustand II .................................................................... 100 7.2.3 Parameterstudie mit der SITgrid 040 Carbonbewehrung nach Ansatz (3) ..... 104 7.2.4 Parameterstudie mit der solidian-Carbonbewehrung nach Ansatz (3) .......... 108 7.2.5 Vergleich und Interpretation der aufgestellten Berechnungen....................... 111 8 Zusammenfassung und Ausblick ....................................................................................... 115 9 Literaturverzeichnis ............................................................................................................ 119 Anhang A – Materialkennwerte ................................................................................................ 127 Anhang B – Bruchbilder der Plattenbalken ............................................................................. 167 Anhang C – Messwerte der experimentellen Untersuchungen ............................................. 183 Anhang D – Vergleich der Berechnungen Ansatz 1 und Ansatz 2 ......................................... 253
170

Soil Improvement Using Microbial Induced Calcite Precipitation and Surfactant Induced Soil Strengthening

Davies, Matthew P. 01 January 2018 (has links)
Microbially induced calcite precipitation (MICP) has been used for a number of years as a technique for the improvement of various geological materials. MICP has been used in a limited capacity in organic rich soils with varying degrees of success. Investigators hypothesized that microbially-induced cementation could be improved in organic soils by using a surfactant. Varying amounts of Sodium Dodecyl Sulfate (SDS) were added to soils of varying organic content and a mixing procedure was used to treat these soils via MICP. Treated specimens were tested for unconfined compressive strength (UCS). Results appeared to show direct relationships between SDS content and treated specimen strength although significant variability was present in the data. In addition, results also indicated that while addition of SDS during MICP treatment strengthens soil, the strengthening is likely from the formation of a calcium dodecyl sulfate (CDS) complex in which the CDS surrounds the soil in a matrix, and formation of MICP-induced calcite has very little to do with overall soil performance. As such, a new method for stabilizing loose soils dubbed ‘Surfactant-induced soil stabilization’ (SISS) was further explored by treating additional soil specimens. Samples treated using this technique showed increases in strength when compared to untreated specimens. In addition, preliminary data indicated that SISS treated specimens were insoluble. The SISS technique presents a number of advantages when compared to traditional soil stabilization techniques. In particular it should be relatively low-cost and simple to administer since its only components are SDS and calcium chloride. Additionally, these constituents are relatively more sustainable than chemicals associated with more-traditional loose soil stabilization techniques.

Page generated in 0.1218 seconds