• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 508
  • 477
  • 117
  • 53
  • 40
  • 37
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 9
  • 8
  • Tagged with
  • 1446
  • 424
  • 341
  • 147
  • 138
  • 94
  • 90
  • 83
  • 81
  • 80
  • 79
  • 65
  • 65
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Characterization of acid phosphatase activities in the equine pathogen Streptococcus equi

Hamilton, A., Harrington, Dean J., Sutcliffe, I.C. 10 1900 (has links)
No / Acid phosphatases hydrolyse phosphomonoesters at acidic pH in a variety of physiological contexts. The recently defined class C family of acid phosphatases includes the 32 kDa LppC lipoprotein of Streptococcus equisimilis. To define further the distribution of acid phosphatases in the genus Streptococcus we have examined the equine pathogens Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Whole cell assays indicated that these organisms possess two acid phosphatases with activity optima at pH 5.0 and pH 6.0-6.5 and that only the former of these was, like LppC, resistant to EDTA. Western blotting with a polyclonal anti-LppC antiserum revealed the presence of a cross-reactive 32 kDa protein in both organisms. The cross-reactive protein in S. equi was shown to be a surface accessible lipoprotein as its processing was inhibited by the antibiotic globomycin and it was released from whole cells by treatment with trypsin. The presence of DNA sequences homologous to the S. equisimilis lppC gene were confirmed by PCR. These data strongly suggest that Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus produce a lipoprotein acid phosphatase homologous to LppC of S. equisimilis.
322

Genetics of type 5 M protein of Streptococcus pyogenes

Kehoe, M.A., Miller, L., Poirier, T.P., Beachey, E.H., Lee, M., Harrington, Dean J. January 1987 (has links)
No
323

Synthèse de HPr(Ser-P)(His~P) chez Streptococcus Salivarius

Casabon, Israël 17 April 2018 (has links)
HPr fait partie du système de transport phosphoénolpyruvate: sucre phosphotransferase (PTS). HPr peut être phosphorylée sur Hisis, par l'enzyme I (El) du PTS, et sur Sér46, par la HPr(Ser) kinase/phosphorylase (HprK/P). Finalement, HPr peut être phosphorylée sur les deux résidus, ce qui génère HPr(Ser-P)(His~P). L'objectif principal de l'étude présentée dans cette thèse était de déterminer par quelle(s) voie(s) HPr(Ser-P)(His~P) est synthétisée chez les streptocoques. Théoriquement, HPr(Ser-P)(His~P) peut être synthétisée via la phosphorylation de HPr(Ser-P) par El et/ou de HPr(His-P) par HprK/P. Nous avons étudié la cinétique de ces voies de synthèse chez Streptococcus salivarius. Les résultats de l'étude avec El ont montré que (i) la kcat/Km pour HPr(Ser-P) était ~5 OOOx plus faible que pour HPr à pH 7,9 et 37°C, (ii) aucun intermédiaire glycolytique ne stimulait la synthèse de HPr(Ser-P)(His~P), (iii) la synthèse de HPr(Ser-P)(His~P) était ~8x plus efficace à pH acide, des conditions retrouvées dans le cytoplasme des streptocoques en croissance, et (iv) la synthèse du HPr(Ser-P)(His~P) de Bacillus subtilis par El de cet organisme était aussi stimulée à pH acide. Les résultats suggèrent que la synthèse de HPr(Ser-P)(His~P) chez les streptocoques résulterait des concentrations élevées en HPr(Ser-P) et de la stimulation de la réaction à pH acide. L'absence de HPr(Ser-P)(His~P) chez B. subtilis cultivée en présence de glucose s'expliquerait en partie par le fait que cette bactérie maintient son pH intracellulaire constamment au-dessus de la neutralité. Les résultats de l'étude avec HprK/P ont montré que les kQJKm pour les HPr(H15D) et HPr(H15E) étaient ~13x plus faibles que pour HPr à pH 7,4 et 37°C. Dans des conditions où HPr(His~P) était stable (pH 8,6 et 15°C), les kcJKm pour HPr(H15D) et HPr(His~P) Ill étaient respectivement neuf et 26 fois plus faibles que pour HPr. Finalement, la phosphorylation de HPr(H15D) n'était que marginalement stimulée à pH acide et le FBP ne stimulait pas la synthèse de HPr(Ser-P)(His~P). Les résultats suggèrent que (i) l'inefficacité de la phosphorylation de HPr(His~P) résulterait de la présence de la charge négative en position 15 et d'autres éléments structuraux et (ii) la contribution de HprK/P à la synthèse de HPr(Ser-P)(His~P) chez les streptocoques serait marginale.
324

Interactions phage-hôte chez Streptococcus pneumoniae

Ouennane, Siham 13 September 2024 (has links)
Streptococcus pneumoniae est une bactérie à la fois commensale et pathogène opportuniste chez l’humain. Elle est responsable de nombreuses infections telles que la pneumonie, la méningite, l’otite moyenne et la sinusite. En maladie infectieuse, S. pneumoniae occupe une place importante en tant que l’une des principales causes de morbidité et de mortalité dans le monde. Elle est dotée de plusieurs capacités fascinantes, comme la compétence naturelle pour l’aider à résister aux antibiotiques et la grande diversité des sérotypes capsulaires pour contourner la vaccination. Puisque la résistance aux antibiotiques ne cesse de menacer l’efficacité des thérapies standards, la thérapie par phage est maintenant reconsidérée comme une des alternatives thérapeutiques. La réévaluation des phages fait renaitre l’espoir thérapeutique, mais sans élucider leur mécanisme d’interaction et décortiquer leur mystère cet espoir restera modeste. Ce projet de doctorat consiste à mieux comprendre les phages infectant S. pneumoniae et les interactions phage-hôte. Dans un premier temps, le potentiel des pneumophages à infecter Streptococcus mitis, une espèce phylogénétiquement proche de S. pneumoniae, a été mis en évidence. Deux pneumophages se sont avérés les premiers phages virulents capables d’infecter S. mitis, bactérie pathogène responsable d’endocardite. Les deux phages pouvaient non seulement se répliquer dans S. mitis mais également produisent des plages de lyses plus visibles. Ensuite, la comparaison du génome des phages a confirmé que le changement de l’hôte n’induit aucune variation aux génomes des phages testés. Cependant, plusieurs mutations ont été observées dans la séquence génomique du podophage sauvage et il a fait ensuite l’objet d’une nouvelle annotation. Dans un deuxième temps, l’étude des interactions phage-hôte chez S. pneumoniae a été approfondie. Pour ce faire, l’implication de plusieurs facteurs de l’hôte dans la réplication des pneumophages a été étudiée. Plusieurs gènes pneumococciques se sont avérés nécessaires ou impliqués pour assurer l'efficacité de la réplication des phages seuls ou en cocktail. D’un autre côté, en étudiant ces facteurs de l’hôte, des gènes/ protéines potentiellement essentiels à la viabilité de S. pneumoniae ont été identifiés. Cette étude a aussi permis d’identifier de nouvelles cibles thérapeutiques et donne un nouvel aperçu du réseau complexe des interactions phage-hôte. / Streptococcus pneumoniae is a commensal and opportunistic pathogen bacterium, exclusively found in humans. It is the main agent of many infections such as pneumonia, meningitis, otitis media and sinusitis. S. pneumoniae infections are a major cause of morbidity and mortality worldwide. S. pneumoniae has several fascinating abilities, such as natural competence to facilitate the acquisition of antibiotic resistance genes and diversity of capsular serotypes to circumvent the vaccination. The rise of antibiotic resistant bacteria continues to threaten the effectiveness of standard therapies and as such phage therapy is now reconsidered as a therapeutic alternative. The reevaluation of phages as therapeutic agents must go through a better understanding of phage-bacterium interactions. This PhD thesis aims to better understand S. pneumoniae virulent phages and phage-host interactions. First, the ability of pneumophages to infect Streptococcus mitis, a species phylogenetically related to S. pneumoniae, was demonstrated. The pneumophages are the first two virulent phages able to infect this pathogenic bacterium, the common cause of bacterial endocarditis. Both pneumophages could not only replicate in S. mitis but also produced more visible plaques on this host. The comparison of the genomes of each phage grown on both hosts produced identical nucleotide sequences, confirming that S. mitis as a host does not induce any nucleotide variation. However, the genomic sequence of wild-type podophage was different than the previously reported sequence and it was the subject of a new annotation. In addition, S. pneumoniae phage-host interactions were investigated. The involvement of several host factors in replication of both pneumophages was observed. Indeed, several pneumococcal genes were found to be necessary or involved to ensure efficient phage replication. Moreover, the study of these host factors has led to the identification of new genes that appear to be essential for viability and normal growth of S. pneumoniae. This project led to identify new potential therapeutic targets and provided new insight into the complex network of phage-host interactions.
325

The type II-A CRISPR-Cas system of streptococcus mutans : characterisation of bacteriophage-insensitive mutan(t)s

Mosterd, Cas 02 February 2024 (has links)
Les bactéries sont continuellement exposées à un danger, la prédation par des bactériophages. Pour se défendre, elles ont développé une grande variété de mécanismes. Parmi ceux-ci, on retrouve CRISPR-Cas (« clustered regularly interspaced palindromic repeats »), un système adaptatif que possèdent environ 45% des bactéries. Une caractéristique unique du système CRISPR-Cas est qu’il constitue en quelque sorte la mémoire de l’hôte. Par exemple, le système peut emmagasiner des petits fragments d’un génome viral, appelés espaceurs, et les introduire dans son CRISPR. Cette mémoire lui permet de se défendre contre une réinfection par le même virus ou un virus hautement apparenté. Par contre, malgré que l’acquisition de nouveaux espaceurs semble fréquente dans la nature, ce phénomène n’est que très rarement observé en conditions de laboratoire. Néanmoins, quelques bactéries font exception à la règle et l’une d’entre elles est Streptococcus mutans. Dans le cadre de cette étude, l’interaction entre la souche S. mutans P42S et le bactériophage virulent M102AD a été analysée en détail. De plus, certaines applications potentielles du système CRISPR-Cas ont également été approfondies. Le premier objectif de cette thèse était de caractériser le système CRISPR-Cas de S. mutans P42S au niveau moléculaire et de déterminer son rôle dans les interactions phage-bactérie. Le deuxième objectif était d’établir le potentiel de la protéine Cas9 de S. mutans P42S (SmutCas9) comme nouvel outil d’édition génomique. S. mutans P42S possède un système CRISPR-Cas de type II-A. Bien que ce type de système soit probablement le plus étudié, celui de S. mutans P42S présente plusieurs caractéristiques uniques lui permettant de se démarquer. En effet, ce dernier reconnaît un PAM différent de ce qui était auparavant connu pour cette espèce bactérienne, l’acquisition simultanée de multiples espaceurs semble fréquente, ce qui est probablement dû au phénomène de « priming ». Malgré le rôle de CRISPR-Cas dans la défense antivirale, S. mutans P42S dispose d’autres mécanismes de défense contre les phages. Des cellules mutantes sont résistantes aux phages en empêchant l’adsorption de particules virales à la cellule ont notamment été observées. D'autres mécanismes sont assurément impliqués dans la défense antivirale de S. mutans. Finalement, SmutCas9 s’est montrée efficace dans l’édition de génomes viraux et elle apparaît comme une candidate à explorer pour cette application. / Bacteria are exposed to the constant threat of viral predation. To defend themselves, bacteria have developed a wide variety of different mechanisms. One of these mechanisms is CRISPR-Cas (clustered regularly interspaced palindromic repeats), an adaptive immune mechanism found in approximately 45% of bacteria. A unique feature of CRISPR-Cas systems compared to other antiviral defence mechanisms is that it has a memory. The system is capable of remembering previous viral encounters and protects the bacterial host from re-infection by the same or highly-related viruses. This memory is due to the acquisition of virus-derived genome fragments called spacers. Despite common acquisition of novel spacers in nature, and thereby the emergence of new immunity, acquisition of new spacers under laboratory conditions has been rarely observed. One of the few exceptions is Streptococcus mutans. In this study, the interactions between S. mutans strain P42S and its virulent bacteriophage M102AD are investigated in detail. In addition, possible applications of the CRISPR-Cas system are analysed. The first objective of this thesis was to characterise the CRISPR-Cas system of S. mutans P42S on the molecular level and to determine its role in antiviral defence. The second objective was to determine the potential of the Cas9 protein of S. mutans P42S (SmutCas9) in genome editing. S. mutans P42S possesses a type II-A CRISPR-Cas system. Although this is arguably the best studied system, the one found in the strain S. mutans P42S has several features that makes it stand out. It recognises a PAM different from what was known for this species, multiple spacer acquisitions are frequent, and this appears to be partially due to priming. Although CRISPR-Cas plays a role in antiviral defence, there are additional antiviral defence mechanisms that protect S. mutans against phages. Adsorption resistance is one of them, although additional unidentified antiviral defence mechanisms are likely involved. Finally, SmutCas9 has been shown functional in editing of viral genomes and appears to be a candidate for human genome editing.
326

Investigations into the pathogenesis of aquatic Streptococcus agalactiae and Streptococcus iniae in Nile tilapia (Oreochromis niloticus)

Featherstone, Zoe L. January 2014 (has links)
The bacterial pathogens Streptococcus agalactiae and S. iniae have the capacity to infect a wide range of fish species throughout the world, with Nile tilapia (Oreochromis niloticus) being particularly susceptible. Global tilapia aquaculture production was estimated to be 3.5 million tonnes in 2008, and has a significant contribution in the global farmed fish market. Due to their ability to adapt to a wide range of culture systems the commercialisation of tilapia production has occurred in more than 100 countries. However, countries such as China have suffered from severe and extensive outbreaks of streptococcosis in cultured tilapia continuously for many years. Such large-scale outbreaks in China have resulted in a loss of approximately US$0.4 billion in 2011. Fish are permanently exposed to a plethora of pathogens and natural disease outbreaks are complex host-pathogen interactions that seldom involve single pathogen infections. As a consequence, simultaneous infections, alternatively called concurrent or co-infections, are starting to receive interest from aquatic disease researchers. Streptococcus agalactiae and S. iniae infections can both occur in the same geographic area and both S. agalactiae and S. iniae have been found to be present on the same farm in a single disease outbreak. It has been found that a disease outbreak caused by one these pathogens can be followed by another outbreak from the other. These two pathogens have serious effects on the tilapia aquaculture industry yet there is no information regarding S. agalactiae and S. iniae co-infections. Such information would be valuable for understanding epidemiology and the development of improved treatment and control of aquatic streptococcosis infections. The overall aim of this study was to investigate the pathogenesis of S. agalactiae and S. iniae in Nile tilapia. One important aspect of investigating simultaneous infections was to examine if there was any competition or synergy between S. agalactiae and S. iniae in vitro or in vivo. It was found that competition between S. agalactiae and S. iniae in vitro was inconsistent between different experimental systems. Results indicated that there was either no interaction between bacterial species or they coexisted during in vitro competition assays. Whereas, an in vivo model utilising wax moth larvae (Galleria mellonella) suggested that during a simultaneous infection with S. agalactiae and S. iniae the total levels of larval mortality were lower than expected indicating that the pathogens may have interacted with one another in a competitive manner. Investigations were also conducted to identify the expression of virulence factors in vitro for S. agalactiae and S. iniae. Comparisons were then made to ascertain any inter- and intra-species variation. Results demonstrated that both S. agalactiae and S. iniae strains possessed a capsule but varied in their haemolytic activity, blood survival and resistance to complement-mediated killing. These variations suggested that the two bacterial species differed in their mechanisms of pathogenicity where aquatic S. agalactiae strains may initially have a more systemic spread of infection and aquatic S. iniae strains may utilise a more localised spread of infection within the host. This hypothesis was tested through the development of a robust and reliable challenge model for S. agalactiae and S. iniae in Nile tilapia. Through this work it was apparent that fish infected with S. iniae experienced an acute infection with morbidity/mortality occurring 1 – 3 days after exposure. Whereas, the S. agalactiae challenged fish showed a more chronic infection with morbidity/mortality occurring from 1 – 6 days after exposure. Findings clearly demonstrated a more systemic spread of infection during a S. agalactiae challenge with high bacterial loads in all the organs examined. Streptococcus iniae was observed in fewer organs of infected fish and bacterial numbers were substantially lower. Concurrent infections are complex in natural conditions and in experimental studies. As a result a substantial amount of research will be required to fully understand the nature of co-infection with these two streptococci. This study has provided a solid foundation upon which to base future work.
327

Characterization of sortase and its effect on the virulence of Streptococcus pneumoniae

Bennett, Allison E. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 5, 2008). Includes bibliographical references.
328

Plaque formation and streptococcal colonization on teeth

Carlsson, Jan, January 1968 (has links)
Akademisk avhandling--Lund. / Extra t.p., with thesis statement, inserted. Bibliography: p. 11-14.
329

Plaque formation and streptococcal colonization on teeth

Carlsson, Jan, January 1968 (has links)
Akademisk avhandling--Lund. / Extra t.p., with thesis statement, inserted. Bibliography: p. 11-14.
330

Alpha C protein of group B Streptococcus as a potential vaccine candidate

Pannaraj, Pia S. Baker, Carol J. Aragaki, Corinne Pedroza, Claudia January 2007 (has links)
Source: Masters Abstracts International, Volume: 46-04, page: 2101. Adviser: Carol J. Baker. Includes bibliographical references.

Page generated in 0.0558 seconds