• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 58
  • 25
  • 18
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 299
  • 82
  • 50
  • 40
  • 40
  • 35
  • 31
  • 31
  • 29
  • 27
  • 25
  • 23
  • 23
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dopamine responses in the ventral straitum contribute to ethanol preference and consumption and, mu opioid receptors do not mediate ethanol stimulated dopamine release

Ramachandra, Vorani Sashrika 27 October 2010 (has links)
The goal of this dissertation was two fold: 1) To relate dopamine responses in the ventral striatum to ethanol preference and consumption, and 2) to investigate the role of the mu opioid receptors in this ethanol induced dopamine release in the ventral striatum. First a two bottle choice experiment established that a substrain of C57BL/6 mice (C57BL/6NCrl) had significantly less preference for and consumption of ethanol than a second substrain of mouse based on the same background (C57BL6/J). The C57BL/6 strain has been extensively used in alcohol drinking studies and is well known for it’s propensity to consume alcohol over water. To determine if differences in ventral striatal dopamine response vii could contribute to this variability in drinking behavior, we characterized the dopamine response in both substrains of mice after intraperitoneal injections of 1.0, 2.0 or 3.0 g/kg ethanol or saline. We found that the acute intraperitoneal ethanol injections in naïve mice caused a significant elevation in dopamine in both substrains at all three doses with a significant difference between substrains at the two highest alcohol doses. Therefore, ethanol induced dopamine release in the ventral striatum may contribute to ethanol preference and consumption. Next, we investigated the effect of acute intraperitoneal ethanol injections on naïve mu opioid receptor knockout mice and in mice pretreated with a mu opioid receptor antagonist. The mice used were all established on the C57BL/6J background. We found that ventral striatal dopamine response was similar in these mice after 1.0, 2.0 and 3.0 g/kg intraperitoneal ethanol injections compared to appropriate controls. As both gene deletion and pharmacological blockade of the mu opioid receptor did not affect ethanol stimulated dopamine release, it points to the conclusion that this receptor may not play a significant role in ethanol induced ventral striatal dopamine release. / text
52

NICOTINIC RECEPTOR MODULATION OF DOPAMINE TRANSPORTERS

Middleton, Lisa Sue 01 January 2006 (has links)
The current project examined the ability of nicotine to modulate dopamine transporter (DAT) function. Initial experiments determined the dose-response for nicotine to modulate dopamine (DA) clearance in rat striatum and medial prefrontal cortex (MPFC) using in vivo voltammetry and determined if this effect was mediated by nicotinic receptors (nAChRs). In both striatum and MPFC, nicotine increased DA clearance in a mecamylamine-sensitive manner, indicating nAChR-mediation. The effect of acute nornicotine on DAT function was also determined. In contrast to nicotine, nornicotine in a dose-related manner decreased striatal DA clearance in a mecamylamine-sensitive manner, indicating nAChR mediation. To determine if tolerance developed to the nicotine effect nicotine, separate groups of rats were injected once daily for 5 days with nicotine or saline. DA clearance in striatum and MPFC was determined 24 hrs after the last injection. Nicotine increased DA clearance only 10-15% in the group repeatedly administered nicotine, demonstrating that tolerance developed. To determine if nicotine altered striatal DAT efficiency, following nicotine injection, DAT density and maximal velocity of [3H]DA uptake was determined using [3H]GBR12935 binding and saturation analysis of [3H]DA uptake in rat striatum, respectively. Nicotine did not alter the Bmax or Kd of maximal binding of [3H]GBR12935 binding. However, an increase in Vmax was observed at 10 and 40 min following nicotine injection, suggesting that nicotine increases DAT efficiency. To determine if systemic nicotine enhanced DAT function via an action at nAChRs on striatal DA terminals, [3H]DA uptake was determined in striatum in vitro in the absence or presence of nicotine in the buffer. Nicotine did not alter the Vmax for [3H]DA uptake in vitro, suggesting that the nicotine-induced increase in DAT function observed in vivo is mediated by nAChRs on DA cell bodies or another site which indirectly alters DAT function. To determine if the increase in DAT efficiency was due to increased surface expression of striatal DAT, biotinylation and Western blot analyses were performed. Nicotine did not alter striatal DAT, suggesting that the nicotine-induced increase in DA clearance in vivo and DAT efficiency in vitro is not the result of increased trafficking of this protein to the cell surface.
53

Contributions of Dorsal/Ventral Hippocampus and Dorsolateral/Dorsomedial Striatum to Interval Timing

Yin, Bin Yin January 2016 (has links)
<p>Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.</p> / Dissertation
54

Sensitivity to Dopamine D1/D2 Receptor Stimulation in Mice Lacking Connexin-32 or Connexin-36

McKenna, James 21 May 2004 (has links)
Previous work has shown D1/D2 requisite synergism can still occur in the striatum in the absence of action potentials. Some nonclassical communication such as gap junctions may be allowing the segregated dopamine (DA) receptors to interact to produce stereotyped motor activity. Connexin-32 (Cx32) and connexin-36 (Cx36) were targeted for study due to their abundance in neural tissues and presence in the striatum. Mice lacking either the Cx32 or Cx36 gene and their respective wildtype littermates were compared on a climbing behavior task used to gauge their dopaminergic activity after receiving either saline, D1 agonist, D2 agonist, or both D1 and D2 agonists. The results showed that D1/D2 requisite synergism was still intact in both strains of mice. The Cx32 WT mice displayed significantly greater scores than the KO mice in the D1/D2 treatment. The Cx36 mice did not display a significant genotype difference, but a trend was observed with the KO females having larger scores relative to WT females or to males of either genotype.
55

Phenotypic and immunohistochemical characterization of conditional knockout mice with a deletion in glutamic Acid decarboxylase (GAD) in Gpr88 containing neurons and the role of striatal GAD in L-Dopa induced dyskinesia

Labak, Samantha 22 January 2016 (has links)
Glutamic Acid Decarboxylase (GAD) is a rate-limiting enzyme responsible for synthesis of the inhibitory neurotransmitter GABA. Dopaminergic denervation in rodents by unilateral injections of 6-OHDA or MPTP causes an increase in Gad67 mRNA in the striatum, which is further exacerbated by administration of L-Dopa (Horvath et al., 2011; Katz et al., 2005 Bacci et al., 2002). Denervation of nigrostriatal neurons is the key pathological hallmark of Parkinson's disease, which results in hypokinetic movement and rigidity. Medium spiny projection neurons of the striatum comprise 95% of the neuronal population and utilize Gad67 (encoded by the Gad1 gene) for the synthesis of basal levels of GABA. The contribution of Gad67 to GABA signaling in medium spiny projection neurons in the striatum has not been thoroughly understood in normal or Parkinsonian states. Mice with a deletion in Gad67 in Gpr88 expressing neurons were generated by crossing mice with a floxed exon 2 of Gad1 with mice expressing Cre recombinase under the control of the Gpr88 promoter. The aim of this study was first, to characterize mice with a deletion in striatal Gad67 by immunohistochmical, electriophysiological and behavioral examination to determine whether Gad67 expression contributes to sensorimotor and learning tasks. And next, to investigate whether a downregulation in striatal Gad67 would decrease dyskinesia and affect the impaired motor symptoms following dopaminergic denervation with a unilateral 6-OHDA lesion and subsequent treatment with L-Dopa. In this study, neuronal Gpr88 expression was indicated by GFP reporter expression, which resulted from Cre-mediated excision of exon 2 of the Gad1 gene. Gpr88 expression was confirmed in the striatum, olfactory tubercle, cortex and brain stem. Furthermore, Gpr88 was confined to striatonigral and striatopallidal MSNs in the striatum. Additionally, Cre-mediated GFP reporter expression indicated that Gpr88 expression occurs throughout various brain regions, including the motor and visual areas of the cortex, amygdala, hippocampus and cerebellum during development. The developmental expression of Gpr88 seems to be a highly regulated process that occurs throughout the brain. In the conditional knockout mouse, deleting striatal Gad67 resulted in an upregualtion of Gad67 in the globus pallidus and downregulation in the substantia nigra. The changes in Gad67 expression indicate the effects of inactivating GABAergic signaling in striatonigral and striatopallidal MSNs in the direct and indirect pathways. Mice with a deletion in striatal Gad67 demonstrated compromised performance in spatial learning in the Morris water maze, suggesting that GABAergic striatal signaling in the direct and indirect pathways accounts for cue-based learning and spatial memory. However, inactivation of GABAergic signaling in striatonigral and striatopallidal MSNs does not account for motor deficits such as bradykinesia, akinesia or hypokinesia in intact mice; instead it perpetuates hyperkinetic motor activity. In the second experiment of this study, dopaminergic denervation by a unilateral 6-OHDA lesion induced bradykinesia and hypokinetic motor behavior, as demonstrated by impaired performance in the rota-rod and pole test. Additionally, L-Dopa administration to 6-OHDA lesioned mice evoked abnormal involuntary movements (AIMs) to the same degree in all dyskinetic mice. A deletion in striatal Gad67 did not decrease symptoms of dyskinesia, nor cause a lessening of motor impairment caused by dopaminergic denervation. Complete inactivation of the indirect pathway is believed to limit the inhibition of unwanted actions and may perpetuate dyskinesia, even when striatonigral MSNs of the direct pathway are inactive.
56

Understanding social behaviour : macaque behaviour in coordination and cooperation games and the encoding of inequity in striatum

van Coeverden, Charlotte Ramona January 2017 (has links)
Social behaviours have been widely studied in behavioural economics and psychology. However, the origins of these behaviours in the brain are poorly understood. In this dissertation I will discuss two main avenues of study which constituted separate projects during my PhD candidacy. The first section contains experiments in which I collaborated with Dr Raymundo Báez-Mendoza on the topic of inequity. The second part includes a study on coordination and cooperation behaviour in macaques. Inequity is a concept ubiquitous in daily life. It is the difference between one’s own reward and that of another. There have been several studies that have suggested inequity affects brain activity. However, few studies have touched upon how this parameter is incorporated in neuronal activity. In the experiments that will be described here, monkeys (Macaca mulatta) performed actions to obtain rewards for both themselves and another. The level of inequity in these rewards was manipulated by varying the magnitude of own and other’s rewards. We then proceeded to study neuronal activity by means of single neuron recordings in the striatum of two macaques. We found that inequity modulated task related activity in about 32% of recorded striatal neurons. In addition to this study on inequity we also recorded some sessions in which one of the animals made choices with varying rewards for self and other. From these results, I attempted to characterise behaviour with regards to own reward and inequity in choice situations. Inequity has been considered a contributing factor in explaining cooperation behaviour. Coordination and cooperation are important and frequently observed behaviours. To study coordination and cooperation, I designed an experiment in which the combination of two monkeys’ choices determined the rewards for both animals. In this dissertation I attempt to address how the animals perform combined choices (playing together vs. alone) as well as the nature of their behaviour (e.g. pro-social vs. self-interested). The aim of this work was to characterise what type of information the animals use to solve these tasks. This is vital if one is to study these concepts in the brain using macaques as a model. In summary, this work contributes to a better understanding of social behaviour and provides an example of how this social behaviour is computed in the brain.
57

Macroautophagy Modulates Synaptic Function in the Striatum

Torres, Ciara January 2014 (has links)
The kinase mechanistic target of rapamycin (mTOR) is a regulator of cell growth and survival, protein synthesis-dependent synaptic plasticity, and macroautophagic degradation of cellular components. When active, mTOR induces protein translation and inhibits the protein and organelle degradation process of macroautophagy. Accordingly, when blocking mTOR activity with rapamycin, protein translation is blocked and macroautophagy is induced. In the literature, the effects of rapamycin are usually attributed solely to modulation of protein translation, and not macroautophagy. Nevertheless, mTOR also regulates synaptic plasticity directly through macroautophagy, and neurodegeneration may occur when this process is deficient. Macroautophagy degrades long-lived proteins and organelles via sequestration into autophagic vacuoles, and has been implicated in several human diseases including Alzheimer's, Huntington's and Parkinson's disease. Mice conditionally lacking autophagy-related gene (Atg) 7 function have been exploited to investigate the role of macroautophagy in particular mouse cell populations or entire organs. These studies have revealed that the ability to undergo macroautophagic turnover is required for maintenance of proper neuronal morphology and function. It remained unknown, however, whether it also modulates neurotransmission. We used the Atg7-deficiency model to explore the role of macroautophagy in two sites of the basal ganglia; 1) the dopaminergic neuron, and 2) the direct pathway medium spiny neuron. Briefly, we treated mice with rapamycin, and then examined whether an observed effect was present in control animals, but absent in macroautophagy-deficient lines. We found that rapamycin induces formation of autophagic vacuoles in striatal dopaminergic terminals, and that this is associated with decreased tyrosine hydroxylase (TH)+ axonal profile volumes, synaptic vesicle numbers, and evoked dopamine (DA) release. On the other hand, evoked DA secretion was enhanced and recovery was accelerated in transgenic animals in which the ability to undergo macroautophagy was eliminated in dopaminergic neurons by crossing a mouse line expressing Cre recombinase under the control of the dopamine transporter (DAT) promoter with another in which the Atg7 gene was flanked by loxP sites. Rapamycin failed to decrease evoked DA release or the number of dopaminergic synaptic vesicles per terminal area in the striatum of these mice. Our data demonstrated that mTOR inhibition, specifically through induction of macroautophagy, can rapidly alter presynaptic structure and neurotransmission. We then focused on elucidating the role of macroautophagy in dopaminoceptive neurons, the DA 1 receptor (D1R)-expressing medium spiny neuron. Mice were confirmed to be D1R-specific conditional macroautophagy knockouts as assessed by p62 aggregate accumulation in D1R-rich brain regions (striatum, prefrontal cortex, and the anterior olfactory nuclei), and by analysis of colocalization of Cre recombinase and substance P. Marked age-dependent differences in the presence of p62+ aggregates were noted when comparing the dorsal vs. ventral striatum, and at different ages. We found that the size of striatal postsynaptic densities (PSDs) are modulated by Atg7, as mutant mice have significantly larger PSDs. Surprisingly, we also observed an increase in DAT immunolabel in the dorsal striatum, which suggests that apart from increasing synaptic strength, lack of macroautophagy in postsynaptic neurons could indirectly lead to functional consequences in presynaptic dopaminergic function. Given the newly elucidated role of macroautophagy in modulating a number of pre- and post- synaptic properties, we then explored the potential implications of this process in mediating the effects of synaptic plasticity, specifically to that induced by recreational drugs. An array of studies demonstrates that drugs of abuse induce numerous forms of neuroplasticity in the basal ganglia. Among these changes, rodents that are chronically treated with psychostimulants show increases in dendritic spine density in striatal medium spiny neurons. Little is known about the molecular mechanisms underlying medium spiny neurons gaining more spines in response to psychostimulants. Also, most data, such as involvement of both the D1R and N-methyl-D-aspartic acid (NMDA) receptors, stems from studies using cocaine, and not amphetamine, although a single injection of cocaine has been shown to increase medium spiny neuron spine density, whether acute amphetamine is capable to do so remains to be elucidated. This is an attractive avenue of research to follow given that amphetamines are used recreationally, abused, but unlike cocaine, prescribed for attention deficit hyperactivity disorder and narcolepsy (reviewed in Heal et al., 2013). A myriad of studies has implicated these two proteins in spinogenesis, spine maturation and maintenance, and neuroplasticity. In addition, several studies have demonstrated an association between levels of PSD95 and spine density in various brain regions. Before characterizing the role of mTOR and macroautophagy in psychostimulant-induced plasticity, we examined if an acute injection of amphetamine at multiple doses (1-30 mg/kg) and times of collection after treatment (1-48 hr) influences PSD95 and Homer1b/c in the striatum of wild-type mice by western blotting. We found that amphetamine failed to robustly modify levels of either protein in the striatum. Our data raises several possibilities, including the possibility that unlike cocaine, acute regimens of amphetamine might not regulate spine density in the striatum, and that, it is crucial to examine their effects separately. Finally, this work now provides a starting point to undertake the study of how acute amphetamine affects macroautophagic machinery that regulates molecular, morphological, functional and whole animal behavior.
58

Rôle des interneurones somatostatine dans la physiologie striatale :une approche morphologique, électrophysiologique et comportementale

Gazan, Adeline 12 February 2019 (has links) (PDF)
Le système des noyaux de la base possède un rôle essentiel dans de nombreuses fonctions telles que le contrôle et l’apprentissage moteur ainsi que les processus motivationnels et cognitifs. Le striatum constitue la principale structure d’entrée de ce système et peut être subdivisé en une région dorsale, impliquée dans cet apprentissage et ce contrôle moteur, et une partie ventrale, impliquée dans le système de la récompense et donc les processus motivationnels. Le striatum est composé de deux principales catégories de neurones :les neurones épineux de projection (ou « medium-sized spiny neurons », MSN) qui composent la majorité de la structure, et des interneurones. Les interneurones du striatum participent à la modulation de l’activité des neurones épineux, selon un modus operandi propre à chaque population. Les interneurones exprimant la somatostatine, le neuropeptide Y (NPY) et l’enzyme de synthèse de l’oxyde nitrique (nNOS) constituent l’une de ces populations d’interneurones et n’a encore été que brièvement caractérisée d’un point de vue fonctionnel. Notre travail de thèse s’est donc focalisé sur l’étude de la fonction des interneurones somatostatine du striatum par une approche basée sur la perte de fonction. Cette étude fonctionnelle a été réalisée à l’aide d’un modèle de souris ayant subi une ablation spécifique des interneurones somatostatine dans le striatum. Trois principaux types d’analyses ont été réalisés. La première partie du travail s’est intéressée aux fonctions de ces interneurones à l’échelle cellulaire et, plus particulièrement à l’effet de la perte de ces interneurones sur l’activité électrique des MSNs. Nous avons ainsi observé que l’ablation des interneurones somatostatine induit une dépolarisation du potentiel membranaire de repos des MSNs et une augmentation de leur excitabilité, suggérant que de par les différents neurotransmetteurs que ces interneurones libèrent, ceux-ci participent au contrôle de leurs propriétés électrophysiologiques. Le second chapitre, toujours à l’échelle cellulaire et dans ce même contexte de connexion interneurone-MSN, a visé à étudier l’effet de la perte des interneurones somatostatine du striatum sur la morphologie des neurones de projection et ce, au moyen d’une reconstruction 3D. Celle-ci a mis en évidence que les MSNs présentent une réduction de leur densité d’épines dendritiques dans la portion distale, pouvant être le résultat d’un mécanisme d’homéostasie synaptique, alors que l’arborisation dendritique-même n’est pas modifiée. Finalement, la dernière partie a considéré le rôle des interneurones à une échelle systémique, en étudiant l’effet de l’ablation sur le comportement de la souris. Nous avons observé que l’ablation des interneurones somatostatine striataux n’altère pas le comportement moteur, le comportement nociceptif ou les comportements modélisant l’anxiété ou la dépression mais résulte en une augmentation de l’hyperlocomotion induite par la cocaïne. Il s’est également avéré que le rôle des interneurones somatostatine du striatum dans la réponse à la cocaïne se limite exclusivement à l’aspect locomoteur de la cocaïne et non à l’aspect motivationnel, comme montré par un test de préférence de place conditionné. Des analyses d’expression de différents marqueurs dopaminergiques ont, de plus, permis de suggérer que le phénotype hyperlocomoteur observé impliquerait une augmentation de l’expression du transporteur de la dopamine. Enfin, une étude électrophysiologique et morphologique des MSNs, chez des souris dépourvues d’interneurones somatostatine dans le striatum et sensibilisées à la cocaïne, a permis de mettre en évidence une occlusion des effets de la cocaïne sur les propriétés membranaires passives et l’excitabilité des MSNs. De plus, l’addition de dopamine au milieu extracellulaire induit une augmentation de l’excitabilité des MSNs des souris ayant subi une ablation des interneurones somatostatine striataux, compatible avec l’expression accrue de transporteur de la dopamine. D’autre part, l’étude morphologique a mis en évidence un effet de la sensibilisation à la cocaïne sur la densité des épines proximales des MSNs des souris dépourvues d’interneurones somatostatine.En conclusion, ce travail de thèse a permis de fournir, à l’aide d’un modèle d’ablation spécifique, des données substantielles quant au rôle des interneurones somatostatine du striatum dans la physiologie striatale et, en particulier leur fonction inhibitrice des MSNs, ainsi que leur rôle dans les comportements impliquant le striatum, dont la réponse induite par la cocaïne. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
59

The role of frontostriatal circuits in basic cognitive processing

Emmons, Eric Blockhus 01 December 2018 (has links)
The ability to take in one’s environment, integrate relevant information, and then act appropriately is an incredibly complex feat that organisms do continuously. Disruption in the ability to think and act clearly, or cognitive dysfunction, is a debilitating aspect of neuropsychiatric diseases like schizophrenia. The prefrontal cortex and the striatum are key brain regions for functional and dysfunctional cognition, but the way that they interact to allow for cognitive processing is poorly understood. To get at these questions, I manipulated and recorded from medial frontal and striatal neurons—frontostriatal ensembles—while rats engaged in interval timing, an elementary cognitive function that engages both areas. I report four main results. First, ramping activity—a gradual, consistent change in neuronal firing rate across time—is observed throughout frontostriatal ensembles. Secondly, medial frontal areas dynamically reflect changing temporal conditions during learning and precede these same changes in striatal areas. Thirdly, interval timing and striatal ramping activity are disrupted when the medial frontal cortex is inactivated. Finally, this behavioral impairment can be reduced by optogenetic stimulation of frontostriatal terminals. My results support the view that striatal neurons integrate medial frontal activity and suggest a possible mechanism—ramping activity—through which neurons might represent the passage of time. These observations elucidate temporal processing in frontostriatal circuits and provide insight into how the medial frontal cortex exerts top-down control of cognitive processing in the striatum. My hope is that these findings will contribute to a clearer understanding of basic cognitive processing and might inform future approaches to treatments that address cognitive dysfunction.
60

EFFECTS OF REPEATED ARIPIPRAZOLE TREATMENT ON THE cAMP AND AKT PATHWAYS IN THE DORSAL STRIATUM OF PREADOLESCENT AND ADULT RATS

Becker, Megan Leigh 01 December 2016 (has links)
The positive symptoms of schizophrenia primarily result from an excess of high affinity D2-like receptors (i.e. D2High receptors). First-generation antipsychotics, such as haloperidol, are D2-like antagonists that can cause severe extrapyramidal effects. Aripiprazole, a dopamine and serotonin partial agonist, has fewer side effects, making it tolerable for adults and children. Extrapyramidal effects (e.g. Parkinsonism, dystonia, and akathisia) are among the most problematic side effects produced by antipsychotic compounds, which likely result from an excess of D2-like receptors in the dorsal striatum. In order to examine the effects of repeated antipsychotic treatment on dopamine system functioning, this thesis compared the molecular effects of repeated haloperidol and aripiprazole administration on D2High receptors, as well as various indices of dopamine second messenger system functioning. Preadolescent and adult rats were pretreated with haloperidol or aripiprazole for 11 consecutive days. After either a 4- or 8-day drug abstinence period dorsal striatal tissue was extracted. [35S]GTPγS binding assays were conducted to assess the effects of repeated haloperidol and aripiprazole treatment on the efficacy and potency of D2-like receptors. PKA subunits and components of the Akt pathway were measured using Western Blots. Results showed that repeated treatment with haloperidol or aripiprazole did not significantly affect D2-like receptor efficacy or potency in young or adult rats. In both age groups, haloperidol significantly increased the expression of PKA-Cα, PKA-Cβ, and PKA-RII, but not p-PKA. Haloperidol also significantly increased PKA-Cβ and PKA-RII levels relative to aripiprazole. Repeated administration of haloperidol significantly increased p-GSK-3β levels in young and adult rats, but neither haloperidol nor aripiprazole significantly affected GSK-3β, Akt, or p-Akt levels. Overall, the results of this thesis indicate that repeated aripiprazole and haloperidol treatment differentially affects D2 signaling pathways in the dorsal striatum. Aripiprazole has less extreme or prolonged effects on D2 receptor signaling pathways than haloperidol, as evidenced by the lack of post-treatment upregulation in the cAMP and Akt pathways. Upregulation of D2-like receptors and, in turn, upregulation of proteins in the cAMP and Akt pathways may be partially responsible for the side effects induced by long-term antipsychotic treatment.

Page generated in 0.0557 seconds