• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 10
  • 5
  • 1
  • Tagged with
  • 63
  • 63
  • 31
  • 30
  • 25
  • 17
  • 12
  • 10
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Post-paleogene Deformation In Northernmost Tip Of Tuzgolu Fault Zone (pasadag, South Of Ankara), Turkey

Celiker, Dilara Gulcin 01 December 2009 (has links) (PDF)
The research area is located to the northern tip of Tuzgolu fault zone in the junction of neotectonic structures, namely, EskiSehir-Cihanbeyli, Sungurlu-Kirikkale and Tuzg&ouml / l&uuml / fault zones (Central Anatolia). The study is carried out in Paleocene sequences of PaSadag group on the structural analysis of bed, gash vein, fault and fault plane slippage data. The method of study based on i) the rose and stereo analysis of the planar structure (beds, gash veins and faults) on ROCKWORKS 2009 software and ii) on fault slip analysis on ANGELIER 1979 software. The bed analyses done on 605 measurements manifest N10&deg / -20&deg / E bedding attitude. The analysis done on 64 gash veins shows a general trend of NNE-SSW (N15&deg / E). The final analysis done on 160 fault planes pointed out a general trend of NNWSSE (N20&deg / W). Analysis based on the fault plane slip data manifest two stages of faulting under almost NE-SW compression during post-Paleocene &ndash / pre-Miocene period and one stage of faulting under WNW-ESE extension most probably during post-Miocene. To conclude, the Paleocene sequences are deformed continuously under WNW-ESE directed compression which is followed by a NE-SW to N-S compression resulted in the development of a reverse to dextral strike slip faulting during post-Paleocene &ndash / pre-Miocene period.
42

Origine des ségrégations leucocrates et des biotitites dans une intrusion felsique-mafique syntectonique : exemple de la région de Baie-Comeau (Tadoussac) /

Fackir, Sanaâ, January 2005 (has links)
Thèse (M.Sc.T.) -- Université du Québec à Chicoutimi, 2005. / Bibliogr.: f. 124-134. Document électronique également accessible en format PDF. CaQCU
43

La marge Nord du Fossé Basque à l'Albien : architecture sédimentaire et diapirisme dans un contexte décrochant (Pays Basque, Espagne) / The Albian northern margin of the Basque Trough : sedimentary architecture and diapirism in a strike-slip tectonic setting (Basque Country, Spain)

Poprawski, Yohann 27 January 2012 (has links)
L'objectif initial de cette thèse consistait à fournir un analogue de terrain de réservoirs pétroliers avec un modèle 3D des structures et de l'architecture des sédiments développés sur la bordure d'un basin étroit et confiné. La zone d'étude, située entre Bakio et Plenzia (Pays Basque, Espagne), appartient au fossé Basque, souvent interprété comme un basin en pull-apart. Nous avons focalisé ce travail sur le diapir de Bakio, sur les modalités de la montée du sel, sa chronologie et sur l'impact de la tectonique salifère sur sédimentation et la déformation des sédiments environnants. Un éventail sédimentaire composé de dépôts albiens, avec un amincissement vers le diapir montre la monté synsédimentaire du sel. Nous démontré l'existence d'une première phase de montée du sel réactive puis une seconde phase passive. La phase réactive est expliquée par l'extension régionale. Durand le stade passive, des séquences halokinetiques, qui résultent de variations entre la monté du sel et le taux de sédimentation, ont été formées. Nos données montre qu'une grande partie de la déformation est due à la rotation des flancs du diapir et non à un cisaillement significatif induit par la montée su sel. Nous avons aussi concentré ce travail sur les structures albiennes de notre zone d'étude. La comparaison avec l'ensemble du Bassin Basco Cantabrien montre deux stades d'activation des failles. De l'Aptien à l'Albien moyen, les nombreuses failles orientées NE-SO, largement distribuées,contrôlaient les plates formes urgoniennes et les fossés marneux associés. Quelques failles majeures héritées, orientées NO-SE contrôlaient aussi les dépocentres surtout dans la partie centrale du Basin Basco-Cantabrien. Ce premier stage est interprété comme le résultat d'un extension NO-SE. De l'Albien moyen à supérieur, la déformation était localisée essentiellement le long de la faille Guernika-Elgoibar, orientée NO-SE, qui contrôle un bassin asymétriques, étroit et allongé remplis par les Flyschs Noirs. Durant le second stage, les dépocentres du Flysch Noir sont interprétés comme des bassins en transtension et non en pull-apart, car une seule faille majeure contrôlait ces basins asymétriques. / The initial purpose of this thesis was to provide a field analogue for petroleum reservoirs with a 3D model of the main structures and of the architecture of deposits developed on the border of a narrow and confined basin. The study area, located between Bakio and Plenzia (Basque Country, Spain), belongs to the Basque Trough, commonly interpreted as a pull-apart basin. We focused on the Bakio diapir, which allows a discussion of the modalities of salt rising, its chronology and of the impacts of salt on the overburden deformation and on sedimentation. A well exposed wedge-shaped structure composed of Albian deposits, with thinning toward the diapir documents synsedimentary salt rising. We showed that the diapir rose firstly as a reactive diapir in response to regional extension and then as a passive diapir. During the passive stage, halokinetic sequences developed, induced by variations of the ratio between net salt rising and net sedimentation rate. All our data from the Bakio diapir show that an important part of deformation is related to diapir flank rotation and not to significant shear associated with salt rising. We also focused on the Albian structural geology in our study area. The comparison of the local Albian fault system with faults from the whole Basque-Cantabrian Basin emphasizes two stages of faults activity. From Aptian to Early-Middle Albian, widely distributed NE-SW striking faults controlled the development of the Urgonian platforms and associated marly troughs. Some major inherited NW-SE striking faults also controlled the localization of depocenters, especially in the central part of the Basque-Cantabrian Basin. The first stage is assumed to result of a NW-SE extension. From Middle to Late Albian, the deformation localized mainly along the Gernika-Elgoibar fault, striking NW-SE, and controlled the formation of a narrow and elongated asymmetric basin developed, filled by Black Flysch units. During this second stage, Black Flysch depocenter are interpreted to form in transtensional setting and cannot be interpreted as pull-apart basins, as only one major fault controlled asymmetric basins.
44

Application of an elasto-plastic continuum model to problems in geophysics

Crooks, Matthew Stuart January 2014 (has links)
A model for stress and strain accumulation in strike slip earthquake faults is presented in which a finite width cuboidal fault region is embedded between two cuboidal tectonic plates. Elasto-plastic continuum constitutive equations model the gouge in the fault and the tectonic plates are linear elastic solids obeying the generalised Hooke's law. The model predicts a velocity field which is comparable to surface deformations. The plastic behaviour of the fault material allows the velocities in the tectonic plate to increase to values which are independent of the distance from the fault. Both of the non-trivial stress and strain components accumulate most significantly in the vicinity of the fault. The release of these strains during a dynamic earthquake event would produce the most severe deformations at the fault which is consistent with observations and the notion of an epicenter. The accumulations in the model, however, are at depths larger than would be expected. Plastic strains build up most significantly at the base of the fault which is in yield for the longest length of time but additionally is subject to larger temperatures which makes the material more ductile. The speed of propagation of the elasto-plastic boundary is calculated and its acceleration towards the surface of the fault may be indicative of a dynamic earthquake type event.
45

Fault Behavior and Kinematic Evolution of the Eastern California Shear Zone

Garvue, Max Martin 07 October 2024 (has links)
The geomorphic expression, sedimentation, and near-field deformation of a fault system may be characterized to obtain an understanding of its kinematic evolution and potential seismic hazards. The dynamics and deformation history of the Eastern California shear zone (ECSZ), a wide and complex network of right-lateral strike-slip faults, is not well understood, despite hosting three large (>Mw 7.0) earthquake ruptures in recent decades. The low-net slip faults of the ECSZ (each with <10 km) offer a unique opportunity to assess strain distribution in a developing, kinematically immature strike-slip system. To do so, I conducted field-based investigations of these faults within the Mojave Block of the ECSZ. First, I investigated the morphology, structure, and controls of restraining bend growth along the numerous faults of the ECSZ via field mapping and numerical deformational modeling. I found that the ECSZ restraining bends are small (kilometer-scale), exhibit high-angle, doubly fault-bound geometries with positive flower structures, and have self-similar morphologies characterized by a "whaleback" longitudinal profile and an arrowhead shape in map view. Gradual changes in form with increasing restraining bend size suggest a common growth mechanism influenced more by the kinematics of local fault geometries than by the fault's obliquity to plate motion. Modeling results indicate that concentrated shear strain at single transpressional bends facilitates the development of new secondary faults with cumulative strain as a mechanism to accommodate horizontal shortening via uplift between the faults. The ECSZ restraining bends contribute minimally to regional contractional strain due to their small size, steep fault angles, and shallow crustal penetration (< 5 km), which also suggests that they are unlikely to obstruct large earthquake ruptures. Second, I conducted a spatiotemporal slip rate analysis of the Calico fault with new mapping and geochronology of offset alluvial fans from North Hidalgo Mountain. From this work I obtain several findings. 1) The slip rate along North Hidalgo Mountain ranges from 1.5-2.1 mm/yr in the Holocene and 0.8-2.0 mm/yr in the late Pleistocene. 2) The similarity in slip rates between North Hidalgo Mountain and the Rodman Mountains suggests that this 38 km stretch is a kinematically coherent fault segment with a relatively steady slip rate of 1.7 +0.4/-0.3 mm/yr over the past 60 ka. Faster rates reported from Newberry Springs suggest either a significant increase in slip rate from the Rodman Mountains to Newberry Springs or temporal variations in slip rate. 3) The new rates support previous work which showed the central section of the Calico fault has the highest slip rate in the Mojave Block. However, it does not resolve the discrepancy between ECSZ geodetic and geologic slip rates, implying that transient changes in slip rate, or the contribution of off-fault deformation or other structures may be required. Additionally, the lack of geological slip rate data might contribute to this discrepancy if significant spatial and temporal variations exist on other ECSZ faults. / Doctor of Philosophy / The topography and geology within a fault system may be studied to understand tectonic plate motion over time and assess earthquake hazards. The Eastern California shear zone is a complex network of strike-slip faults within the Mojave Desert, which has hosted three large earthquakes (>Mw 7.0) in recent decades. Despite this significant seismic activity, the mechanisms of motion across the numerous faults in the Eastern California shear zone remain poorly understood. The individual faults have accumulated relatively little strike-slip motion since their inception (less than 10 kilometers), offering a unique opportunity to investigate the early-stage kinematics and seismic hazards of a strike-slip fault system. To do so, I conducted field-based investigations of the faults within the Eastern California shear zone. First, I investigated the early evolution and controls of compressional strike-slip fault bends in the Eastern California shear zone. From mapping and numerical modeling, I characterized the shape, structure, and uplift of numerous small compressional bends dispersed across the faults. From these efforts, I found that uplifted crust in the fault bends exhibit self-similar forms with shallow crustal depths (<5 km). Small changes in the shape of these structures occur with increasing size indicating a predictable pattern of growth with increasing cumulative slip that appears to be partially controlled by local fault conditions. Numerical modeling of simple compressional fault bends indicate that shear strain concentrates at bend corners, which may facilitate the growth of a new fault that more efficiently accommodates contraction in the bend via uplift of the crust between the two faults. The compressional strike-slip fault bends in the Eastern California shear zone are too small to significantly impact regional contractional strain and are therefore also unlikely to impede large earthquake ruptures. Second, I studied the slip rate (or rate at which the fault moves) of the Calico fault via new mapping and age data of displaced alluvial fans. I found that 1) the Calico fault at North Hidalgo Mountain slips at a rate of 0.8-2.0 mm/yr since ~70,000 years ago. 2) The slip rates from North Hidalgo Mountain and the Rodman Mountains are similar, indicating that the 38 kilometers between them behaves consistently, with a steady rate of ~1.7 mm/yr over the last ~60,000 years. However, faster slip rates reported at Newberry Springs suggest either a significant increase in slip rate from the Rodman Mountains to Newberry Springs or that it varies over time. 3) These findings confirm that the central Calico fault has the fastest slip rate in the Mojave Block but does not reconcile regional differences between rates from geodetic and geological measurements. The difference between the slip rates measured by geodetic methods and those from geological studies in the Eastern California shear zone suggests that there could be temporary changes in slip rates or that deformation might be occurring in areas away from the main fault. Also, the lack of geological slip rate data might contribute to this discrepancy if significant spatial and temporal variations exist on other Eastern California shear zone faults.
46

The Late Proterozoic to Palaeozoic Tectonic Evolution of the Long Range Mountains in Southwestern Newfoundland

Brem, Arjan Gerben January 2007 (has links)
Ever since the first plate-tectonic model for the Appalachians was proposed, the Laurentian margin has been interpreted as having experienced a collision-related dynamo-thermal event during the Middle Ordovician Taconic orogeny. In the western Newfoundland Appalachians, evidence for this collision is well-preserved in the Dashwoods subzone. Nevertheless, rocks of the neighbouring Corner Brook Lake block (CBLB), which is located in the heart of the Laurentian realm, did not show evidence for such an event. Instead, it was affected by Early Silurian Salinic deformation and associated peak metamorphism. Even though this difference in Early Palaeozoic tectonic history between the Dashwoods and the CBLB is widely known, it has not been satisfactorily explained. To better understand the Early Palaeozoic history of the region, in particular to test and better explain the lack of a Taconic dynamo-thermal event in the CBLB, field mapping, microscopic work, and U-Pb and 40Ar/39Ar geochronological studies were undertaken in the western and northern part of the Dashwoods subzone, and in the southern part of the CBLB. In addition, the kinematic history of the Baie Verte-Brompton Line - Cabot Fault Zone (BCZ), the tectonic zone that separates the two unique tectonic fragments, was studied. The western and northern parts of the Dashwoods subzone contain variably foliated igneous units of Middle Ordovician age (ca. 460 Ma) that are associated with the regionally voluminous Notre Dame continental arc. A ca. 455 Ma conjugate set of late syn-tectonic pegmatite dykes in the BCZ demonstrates a dextral sense of shear along the BCZ (DBCZ-1) during the Late Ordovician to earliest Silurian, and constrains the minimum age of the main phase of ductile deformation in the Dashwoods subzone. The fault-bounded CBLB has been affected by a single west-vergent deformational event, constrained between ca. 434 and ca. 427 Ma. More importantly, no evidence – neither petrographic nor geochronological – is present that would indicate that the CBLB was affected by a significant Taconic dynamo-thermal event. Hence, the CBLB and Dashwoods could not have been juxtaposed until after the late Early Silurian. Furthermore, the basement to the CBLB is devoid of any Grenville (sensu lato; ca. 1.0-1.3 Ga) U-Pb ages, which is in sharp contrast with crystalline basement elsewhere in the region, such as the Long Range Inlier. Therefore, it is highly unlikely that the CBLB represents the para-autochthonous leading edge of the Laurentian craton in the Newfoundland Appalachians, as commonly accepted. The CBLB is interpreted as a suspect terrane that has moved over 500 km parallel to the strike of the orogen. Docking to the external Humber Zone is likely to have occurred during the Early Silurian. Final juxtaposition with the Dashwoods took place after the late Early Silurian (post-Salinic) as a result of protracted dextral movement along the BCZ (DBCZ-2 and DBCZ-5). Current tectonic models for the Newfoundland Appalachians mainly focus on well-documented Early Palaeozoic orthogonal convergence of various terranes with the Laurentian margin, but large-scale orogen-parallel movements have rarely been considered. The possibility of large-scale strike-slip tectonics documented here, in addition to the convergent motions, may have significant implications for the tectonic interpretation of the Early Palaeozoic evolution of the Newfoundland Appalachians.
47

The Late Proterozoic to Palaeozoic Tectonic Evolution of the Long Range Mountains in Southwestern Newfoundland

Brem, Arjan Gerben January 2007 (has links)
Ever since the first plate-tectonic model for the Appalachians was proposed, the Laurentian margin has been interpreted as having experienced a collision-related dynamo-thermal event during the Middle Ordovician Taconic orogeny. In the western Newfoundland Appalachians, evidence for this collision is well-preserved in the Dashwoods subzone. Nevertheless, rocks of the neighbouring Corner Brook Lake block (CBLB), which is located in the heart of the Laurentian realm, did not show evidence for such an event. Instead, it was affected by Early Silurian Salinic deformation and associated peak metamorphism. Even though this difference in Early Palaeozoic tectonic history between the Dashwoods and the CBLB is widely known, it has not been satisfactorily explained. To better understand the Early Palaeozoic history of the region, in particular to test and better explain the lack of a Taconic dynamo-thermal event in the CBLB, field mapping, microscopic work, and U-Pb and 40Ar/39Ar geochronological studies were undertaken in the western and northern part of the Dashwoods subzone, and in the southern part of the CBLB. In addition, the kinematic history of the Baie Verte-Brompton Line - Cabot Fault Zone (BCZ), the tectonic zone that separates the two unique tectonic fragments, was studied. The western and northern parts of the Dashwoods subzone contain variably foliated igneous units of Middle Ordovician age (ca. 460 Ma) that are associated with the regionally voluminous Notre Dame continental arc. A ca. 455 Ma conjugate set of late syn-tectonic pegmatite dykes in the BCZ demonstrates a dextral sense of shear along the BCZ (DBCZ-1) during the Late Ordovician to earliest Silurian, and constrains the minimum age of the main phase of ductile deformation in the Dashwoods subzone. The fault-bounded CBLB has been affected by a single west-vergent deformational event, constrained between ca. 434 and ca. 427 Ma. More importantly, no evidence – neither petrographic nor geochronological – is present that would indicate that the CBLB was affected by a significant Taconic dynamo-thermal event. Hence, the CBLB and Dashwoods could not have been juxtaposed until after the late Early Silurian. Furthermore, the basement to the CBLB is devoid of any Grenville (sensu lato; ca. 1.0-1.3 Ga) U-Pb ages, which is in sharp contrast with crystalline basement elsewhere in the region, such as the Long Range Inlier. Therefore, it is highly unlikely that the CBLB represents the para-autochthonous leading edge of the Laurentian craton in the Newfoundland Appalachians, as commonly accepted. The CBLB is interpreted as a suspect terrane that has moved over 500 km parallel to the strike of the orogen. Docking to the external Humber Zone is likely to have occurred during the Early Silurian. Final juxtaposition with the Dashwoods took place after the late Early Silurian (post-Salinic) as a result of protracted dextral movement along the BCZ (DBCZ-2 and DBCZ-5). Current tectonic models for the Newfoundland Appalachians mainly focus on well-documented Early Palaeozoic orthogonal convergence of various terranes with the Laurentian margin, but large-scale orogen-parallel movements have rarely been considered. The possibility of large-scale strike-slip tectonics documented here, in addition to the convergent motions, may have significant implications for the tectonic interpretation of the Early Palaeozoic evolution of the Newfoundland Appalachians.
48

Seismic velocity contrasts and temporal changes of strike-slip faults in central California

Zhao, Peng 27 August 2010 (has links)
The spatial patterns of bimaterial interfaces along the Parkfield section of the San Andreas Fault (SAF) and central section of the Calaveras Fault are systematically investigated with large data sets of near-fault waveforms. Different from the usage of direct P and S waves in traditional tomographic studies, a particular seismic phase named fault zone head wave (FZHW) is used to image the bimaterial fault interfaces. The results show clear variations of seismic velocities contrast both along-strike and along-depth directions in both regions, which is in general consistent with local geological setting at surface and existing 3D tomography results. In the Parkfield section of SAF, the result of velocity contrast is used to test the relationship between preferred rupture directions of M6 Parkfield earthquakes and bimaterial interface. Strong velocity contrast (~5-10%) near Middle Mountain (MM) could control the rupture directions of nearby earthquakes to SE, such as the case for 1966 M6 Parkfield earthquake. In comparison, weak velocity contrast (~0-2%) near the epicenter of the 2004 Parkfield M6 earthquake (i.e., Gold Hill) probably has no influence on controlling its rupture direction, which is consistent with the bilateral rupture of the 2004 Parkfield earthquake. In the central Calaveras Fault, a detailed analysis of the moveout between FZHWs and direct P waves revealed the existence of a complicated fault structure with velocity contrast increasing from NW to SE of station CCO. The high velocity contrast SE of station CCO could be caused by a low-velocity zone SE of station CCO. The spatio-temporal variations of seismic velocity around the central Calaveras Fault and its nearby region are investigated based on the waveform analysis of 333 repeating clusters following the 1984 ML6.2 Morgan Hill earthquake. Clear reduction of seismic velocity is shown for all repeating clusters immediately after the mainshock, followed by a logarithmic recovery. The coseismic change mostly occurs at shallow layers (top few hundred meters) for the region away from the rupture area of the mainshock, but extends much deeper around the rupture zone of the Morgan Hill earthquake. The estimated depth of the damage zone is up to 6 km in the fault based on the repeating clusters directly beneath station CCO. Finally, temporal changes around the Parkfield section of SAF are studied using recently developed ambient noise cross-correlation technique. The extracted daily empirical Green functions (EGFs) from 0.4-1.3 Hz noise records are used to estimate subtle temporal changes associated with large earthquakes from local to teleseismic distances. The results show clear coseismic reduction of seismic velocities after the 2004 M6 Parkfield earthquake, similar to the previous observation based on repeating earthquakes. However, no systematic changes have been detected for other four regional/teleseismic events that have triggered clear tremor activity in the same region. These results suggest that temporal changes associated with distance sources are very subtle or localized so that they could not be detected within the resolution of the current technique (~0.2%).
49

Structure of the Patagonian fold-thrust belt in the Magallanes region of Chile, 53° - 55° S Lat.

Betka, Paul Michael 18 February 2014 (has links)
The southern Patagonian Andes record the Late Cretaceous closure and inversion of the Late Jurassic – Early Cretaceous Rocas Verdes marginal basin, subsequent development of the Patagonian retroarc fold-thrust belt and the Neogene to present tectonic superposition of a left-lateral strike-slip plate margin defined by the Magallanes- Fagnano fault zone. In this dissertation, I present new geologic maps, cross sections and detailed macro- and microscopic structural analyses that describe the geometry and kinematic evolution of the fold-thrust belt and superposed strike-slip deformation over ~200 km along-strike between 53° and 55° S latitude. Results are discussed in the context of the regional tectonic development of the southernmost Andes and are relevant to the understanding of important tectonic processes including the development of a retroarc fold-thrust belt, the formation of a basal décollement below and toward the hinterland of a fold-thrust belt and the spatial distribution of deformation along a strike-slip plate margin. New maps and balanced cross-sections of the Patagonian fold-thrust belt show that it developed during two main phases of Late Cretaceous to Paleogene shortening that were partly controlled by the antecedent geology and mechanical stratigraphy of the Rocas Verdes basin. During the Late Cretaceous, a thin-skinned thrust belt developed above a décollement that formed first in relatively weak shale deposits of the Rocas Verdes basin and later deepened to <1 km below the basement-cover contact. Ramps that cut mechanically rigid volcanic rocks of the marginal basin link the two décollements. Basement-involved reverse faults that cut the early décollements and probably reactivate Jurassic normal faults reflect Paleogene shortening. Shortening estimates increase northwest to southeast from 26 to 37% over 100 km along-strike and are consistent with regional models of the fold-thrust belt. Structural data, kinematic analyses, and microstructural observations from the lower décollement show that it is defined by transposition of several generations of northeast-vergent noncylindrical folds, shear bands, and a quartz stretching lineation that are kinematically compatible with first-generation structures of the fold-thrust belt. Quartz microstructural data from the décollement are consistent with deformation temperatures that decrease from ~500-650° C to ~400-550° C over ~75 km in the transport direction, indicating that the décollement dipped shallowly (~6°) toward the hinterland. The décollement decoupled the underthrust continental margin from the fold- thrust belt and exemplifies the kinematic relationship between shortening that occurs coevally in a retroarc fold thrust-belt and its polydeformed metamorphic ‘basement’. Fault kinematic data and crosscutting relationships show kinematic and temporal relationships between populations of thrust, strike-slip and normal faults that occur in the study area. Thrust faults form an internally compatible population that shows subhorizontal northeast-trending shortening of the fold-thrust belt and is kinematically distinct from populations of normal and strike-slip faults. Both strike-slip and normal faults crosscut the fold-thrust belt, are localized near segments of the Magallanes- Fagnano fault zone, have mutually compatible kinematic axes and are interpreted to be coeval. Strike-slip faults form Riedel and P-shear geometries that are compatible with left-lateral slip on the Magallanes-Fagnano fault-zone. Strike-slip and normal faults occur in a releasing step-over between two overlapping left-lateral, left-stepping segments of the Magallanes fault zone and record a tectonic event defined by sinistral transtension that probably reflects changing plate dynamics associated with the opening of the Drake Passage during the Early Miocene. / text
50

Strike-slip faulting and basin formation at the Guayape Fault--Valle de Catacamas intersection, Honduras, Central America

Gordon, Mark Buchanan, 1961- 24 June 2011 (has links)
The Valle de Catacamas forms a major basin along the central portion of the Guayape fault, the most prominent tectonic element of the Chortís block. The Guayape fault extends 290 km southwest from the Caribbean coast to the region of El Paraíso, Honduras, and may continue to the Pacific coast along a related prominent topographic feature, the Choluteca linear. Basins presently forming along the Guayape fault indicate that the fault is currently experiencing right-slip. The active features of the Valle de Catacamas displace older folds and reverse faults which apparently formed during an earlier period of sinistral shear. Thus, the Guayape fault has undergone at least two phases of movement, post-Cenomanian left-slip followed by the present right-slip. The geology of the valley suggests multiple stages of evolution. These include at least one period of thrust and reverse faulting, possibly associated with sinistral shear along the Guayape fault, and a recent episode of normal faulting associated with dextral shear on the Guayape fault. Thrusting of basement rocks over Jurassic strata on the south side of the valley was the earliest deformation to affect Mesozoic or Cenozoic rocks. The event can only be dated as post-Jurassic in age. The Cretaceous rocks of the Sierra de Agalta on the north side of the Valle de Catacamas are much more strongly deformed than similar rocks in central Honduras. In this range, the Aptian-Albian Atima Limestone commonly has a pervasive pressure solution cleavage which has not been reported from other locations on the Chortís block. The cleavage is apparently axial planar to the folds. The age of this deformation is constrained only as post-Cenomanian. SIR data indicate that these folds are deflected in sinistral shear near the Guayape fault. In addition, a major structural contact has a large left-lateral separation. The folds in the Sierra de Agalta are cut by the range-bounding normal fault of the Sierra de Agalta. Younger rocks are placed on older rocks by this normal fault, and fault slip data from small fault planes in the footwall block indicate normal faulting. The N 65° E strike of this normal fault, the N 35° E strike of the Guayape fault, and stress orientations inferred from fault slip data indicate that the present movement on the Guayape fault is right-slip. Fault slip data from the Guayape fault zone is heterogeneous as would be expected if two stage slip has occurred. / text

Page generated in 0.0949 seconds