• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mid-infrared Non-perturbative Nonlinear Optics in Atomically Thin Semiconductors / 原子層半導体薄膜における中赤外領域の非摂動非線形光学

Nagai, Kohei 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(理学) / 甲第23690号 / 理博第4780号 / 新制||理||1684(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 田中 耕一郎, 教授 金光 義彦, 教授 柳瀬 陽一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
12

High Harmonic Spectroscopy of Complex Molecules

Wong, Michael C. H. January 2014 (has links)
Advancements in spectroscopy rely on the improvement of two fundamental characteristics: spatial and temporal resolutions. High harmonic spectroscopy (HHS) is an emerging technology that promises the capability of studying the fastest processes that exist today: electronic motion with angstrom spatial and attosecond temporal resolution. HHS is based on the process of high harmonic generation (HHG) which arises from the nonlinear interaction between an intense, infrared laser pulse and an atomic or molecular gaseous medium, producing coherent, attosecond-duration bursts of extreme ultraviolet (XUV) light. In order to utilize the attosecond pulses for spectroscopic measurements, it is necessary to improve the conversion efficiency of HHG. Chapter 2 of this thesis describes the improvements we make to the HHG source in order to obtain high XUV photon flux and we report on the nonlinear ionization of atomic systems using these pulses in Chapter 6. In Chapters 3 - 5, we describe several HHG experiments in complex, polyatomic molecules in order to promote the use of HHS as a general spectroscopic tool. Amplitude modulations in high harmonic spectra of complex molecules can be attributed to several types of interference conditions that depend on a system's molecular or electronic structure such as recombination with multiple centres or dynamical interference from multi-orbital contributions to ionization. Our results demonstrate the capability of HHS to extract useful information on molecular and electronic structure from large, polyatomic molecules directly from their high harmonic spectra. Furthermore, we use HHS to investigate the suppression of ionization in complex molecules due to quantum destructive interference during ionization as well as the distinguishability of emitted harmonic spectra from molecular isomers. Chapter 6 explores the study of multi-electron dynamics in complex molecules using XUV multiphoton ionization of atoms and molecules as well as the ionization and fragmentation of C60 which has hundreds of delocalized valence electrons. This thesis also describes the author's role in the design and fabrication of a time-of- flight mass spectrometer (Section 6.1) as well as an HHG detector system (Appendix A).
13

Wavelength Dependent High-Order Above Threshold Ionization Enhancements in Atoms

Talbert, Bradford Kent January 2021 (has links)
No description available.
14

Scaled Strong Field Interactions at Long Wavelengths

Sistrunk, Emily Frances 15 December 2011 (has links)
No description available.
15

High energy and high repetition rate parametric sources in the mid- wavelength Infrared and their applications / Sources paramétriques de haute énergie et de haute cadence dans l’infrarouge moyen et leurs applications en champ fort

Archipovaite, Giedre Marija 25 September 2018 (has links)
Les sources lasers à impulsions ultracourtes de forte puissance dans la région spectrale du proche à moyen infrarouge sont très demandées pour la physique des champs forts dans les atomes, les molécules et la matière condensée. D’après le modèle en trois étapes [1], l’énergie coupée des harmoniques élevées générées varie comme I×λ2. Cela favorise les longueurs d’onde plus longues pour générer des photons XUV plus énergétiques, et potentiellement des impulsions attosecondes plus courtes. Malheureusement, l’extension de l’énergie des photons se fait au prix d’une diminution de l’efficacité en λ−5,5 [2]. La disponibilité d’un système laser à haute cadence est un atout majeur pour palier aux problèmes d’efficacité et produire des flux de photons élevés. Même s’il existe quelques matériaux de gain laser adaptés à la génération d’impulsions femtoseconde intense dans la région spectrale infrarouge intermédiaire, l’amélioration globale du taux de répétition, de la durée et de la puissance des impulsions sont encore des défis [3, 4]. Ainsi, les systèmes paramétriques basés sur un mélange non linéaire à trois ondes sont une alternative intéressante pour générer les impulsions ultracourtes requises pour ce type d’expériences. Actuellement, les systèmes paramétriques à haute puissance dans l’infrarouge moyen ne peuvent pas atteindre les intensités requises pour générer des harmoniques dans le gaz. Cependant, ces sources sont des moteurs intéressants pour la génération d’harmonique (HHG) dans les solides, qui nécessitent des intensités sur cible plus faibles. Par ailleurs, les systèmes à haute énergie, mais à taux de répétition plus bas, sont capables de générer des impulsions suffisamment énergétiques pour les expériences HHG dans le gaz. Cependant, l’efficacité globale de ces sources est encore faible. En fonction de l’énergie harmonique requise, le rayonnement peut être généré efficacement par des lasers NIR post-comprimés.Cette thèse décrit le développement des sources MWIR et leurs applications en physique des champs forts. Nous avons choisi d’étudier des sources paramétriques pilotées par un laser à pompe CPA de puissance moyenne élevée et par un système laser à grande énergie Yb: CaF2. Les impulsions MWIR générées sont ensuite utilisées pour sonder l’interaction du matériau laser à travers HHG dans les solides et les gaz. / Ultrashort pulse light sources in the near- to mid-wavelength infrared spectral region are in high demand for strong field physics in atoms, molecules and condensed matter. According to the three step model [1], the energy cut off of generated high harmonics scales as I×λ2, which favors longer driving wavelengths in order to generate more energetic XUV photons, and potentially shorter attosecond, soft X-ray pulses. Unfortunately, photon energy extensionis at the cost of an efficiency drop scaling as λ−5.5 [2]. The availability of a high-repetitionrate laser system is paramount to mitigate the efficiency issues and still produce high photon fluxes. Even though there are only a few laser gain media suitable for intense femtosecond pulse generation in the mid-IR spectral region, the overall scalability of the pulse repetition rate, the duration and power are still a challenge [3, 4]. Thus, parametric systems based on a nonlinear three wave-mixing, are an attractive alternative to generate the required ultrashort pulses for those experiments. Currently high power middle infrared parametric systems can’t reach the required intensities to reliably drive high harmonic generation (HHG) in gas. However, these sources are attractive drivers for HHG in solids, which requires lower intensities on the target. On the other hand, high energy, but lower repetition rate systems arecapable of generating energetic pulses for HHG experiments in gas. However, the overall efficiency of those drivers is still low. Depending on the required harmonics energy, the XUV could be efficiently generated by post-compressed NIR lasers.This thesis describes the development of MWIR sources and their applications in strong field physics. We have chosen to investigate parametric sources driven by high average power fiber CPA pump laser and by high energy Yb:CaF2 bulk laser system. The generated MWIR few cycle pulses are then used to probe laser material interaction through HHG in solids and gas.
16

Dynamics of Near-Threshold, Attosecond Electron Wavepackets in Strong Laser Fields

Kiesewetter, Dietrich 04 September 2019 (has links)
No description available.
17

Molecules exposed to Intense, Ultrashort Laser Fields

Förster, Johann Jakob 07 May 2018 (has links)
Das Ionisierungsverhalten kleiner Moleküle (insbesondere H2 und NH3) in intensiven, ultrakurzen Laserfeldern wird theoretisch untersucht. Das Hauptaugenmerk liegt dabei auf dem Einfluss der Kerndynamik. Zunächst wird das Ionisierungsverhalten des H2-Moleküls bei eingefrorener Kernschwingung untersucht. Bereits im Rahmen dieser Näherung kann im Mehrphotonenregime ein zuvor beobachteter Zusammenbruch der Näherung im Gleichgewichtsabstand festgehaltener Kerne erklärt werden. Weiterhin wird der Übergang vom Mehrphotonen zum quasistatischen Ionisierungsregime für 800-nm-Laserfelder untersucht. Eine neuartige Methode zur Beschreibung der korrelierten Schwingungs- und Elektronendynamik des H2-Moleküls (7D) wird entwickelt. Mit dieser Methode wird schließlich der Einfluss der Kernbewegung während des Laserfeldes auf das Ionisierungsverhalten untersucht. Es wird ein sichtbarer Einfluss auf den zuvor diskutierten Zusammenbruch der Näherung festgehaltener Kerne beobachtet. Dies gilt ebenfalls für einen vor kurzem experimentell beobachteten Isotopeneffekt in der Ionisierung der Moleküle H2 vs. D2 untersucht. Im zweiten Teil der Arbeit wird das Ionisierungsverhalten des NH3-Moleküls untersucht. Die Möglichkeit, die Kerngeometrieabhängigkeit zur Erzeugung und Messung von Schwingungswellenpaketen im neutralen NH3-Molekül mittels Lochfraß auszunutzen, wird untersucht. Das erwartete Schwingungsverhalten und die dafür optimalen Laserparameter werden aufgezeigt. Zusätzlich wird die Möglichkeit des Filmens eines tunnelnden Kernwellenpakets im Doppelmuldenpotential entlang der Schwingungskoordinate untersucht. In der Tat sollte die Verwendung extrem kurzer Laserfelder das Drehen eines Echtzeit-Filmes dieses quantenmechanischen Tunnelprozesses ermöglichen. Abschließend werden die Winkelabhängigkeit der Ionisierungswahrscheinlichkeit von NH3 (ähnelt Orbitalgeometrie) sowie elliptisch polarisierte Laserfelder untersucht. / The ionization behavior of small molecules (especially H2 and NH3) exposed to intense, ultrashort laser fields is investigated theoretically. The focus lies on the influence of nuclear dynamics on this ionization behavior. The ionization behavior of the H2 molecule is first examined within the frozen-nuclei approximation. A previously reported pronounced breakdown of the fixed-nuclei approximation can be explained already within this level of approximation. Furthermore, the transition from the multiphoton to the quasistatic ionization regime is studied for 800 nm laser pulses. A novel approach for the correlated description of the electronic-vibrational motion of the H2 molecule (7D) is developed. The influence of vibrational dynamics during the laser field on the ionization behavior is investigated using this method. A pronounced difference on the previously discussed breakdown of the fixed-nuclei approximation is observed. The vibrational dynamics also lead to a notable change for a recently experimentally observed isotope effect in the ionization of the molecular isotopes H2 vs. D2. The ionization behavior of the NH3 molecule is studied in the second part of this thesis. The possibility to exploit the geometry dependence of the ionization yield in order to create and measure vibrational wave packets in the neutral NH3 molecule via Lochfraß is explored. The expected vibrational dynamics and the optimal laser parameters to observe this effect are demonstrated. Furthermore, the possibility to shoot a "movie" of a tunneling wave packet in the double-well potential along the vibrational coordinate is investigated. Indeed, extremely short laser fields should allow creating a real-time movie of the quantum-mechanical tunneling process. Finally, the orientation dependence of the ionization yield of the NH3 molecule (reflecting the orbital shape) and elliptically polarized laser fields are studied.
18

Attoclock Induced Electron Dynamics

Dutta, Soumi 22 November 2021 (has links)
Theoretical and experimental studies on intense laser atom interaction have drawn many interests over the past few decades. In this thesis, we consider strong-field tunnel ionization to explore two different problems dealing with the ionized-electron dynamics in the presence of an infrared, high-intensity, elliptically-polarized laser pulse. In the first part, we discover the electron dynamics from a static potential, this describes the complicated field-driven dynamics by a simple time-independent problem. In the second part, we set up an analytical expression for the attoclock offset angle. We use the time-dependent Kramers-Henneberger (KH) potential, and show how some approximations within the KH potential lead to the static potential and the analytical offset angle. We elucidate good agreement of our theory with the numerical results obtained from classical equations of motion. Finally, the comparison with the available experimental data has led to an interestingly new tunnel exit-radius different from the conventional models.
19

Driving strong-field dynamics with tailored laser pulses

Bengs, Ulrich 15 May 2023 (has links)
Durch fortschreitende Entwicklung im Bereich der Starkfeldphysik und der Lasertechnologie in den letzten Jahrzehnten kann die Dynamik von Elektronen induziert durch Laserpulse verschiedener Wellenlängen, komplexen Polarisationseigenschaften, ultrakurzer Dauer und großer Intensität in hohem Umfang kontrolliert und ausgenutzt werden. In dieser Arbeit werden maßgeschneiderte Laserpulse angewendet, um verschiedene Aspekte der atomaren Licht-Materie-Wechselwirkung im Starkfeldbereich zu untersuchen. Im ersten Teil der Arbeit wird insbesondere die Erzeugung von hohen Harmonischen erforscht, die durch zirkular polarisierte Laserfelder erzeugt werden, wobei das maßgeschneiderte Feld aus einem zirkular polarisierten Infrarotpuls und seiner zweiten Harmonischen mit entgegengesetzter zirkularer Polarisation besteht. Die Polarisation von zirkularen hohen Harmonischen wird mittels spektral aufgelöster Polarimetrie unter Verwendung eines selbst entwickelten Polarimeters gemessen und ein Verfahren vorgestellt, mit dem der Stokes-Vektor der hoch zirkular polarisierten Harmonischen vollständig rekonstruiert werden kann. Darüber hinaus wird zum ersten Mal gezeigt, dass das bizirkulare Schema auch auf erzeugende Laserpulse weniger Zyklen erweiterbar ist. Der zweite Teil der Arbeit konzentriert sich auf die Starkfeldanregung eines Atoms durch einen intensiven Laserpuls. Da die ponderomotorische Verschiebung eines ausreichend intensiven Laserpulses eine resonante Anregung eines durch den Stark-Effekt verschobenen Atomzustands sowohl an der Vorder- als auch an der Rückflanke des Pulses bewirkt, diktiert die fundamentale Quantenmechanik, dass die an diesen Instanzen angeregten Elektronenwellenpakete interferieren müssen. Durch Variation der Verzögerung zwischen den Instanzen kann ein Interferenzmuster beobachtet werden, das als Stückelberg-Oszillationen bekannt ist und wertvolle Informationen über die Ionisierungsrate stark angeregter atomarer Zustände enthält. / As our fundamental understanding of strong-field physics and laser technology have matured in the last few decades, we are able to control and exploit electron dynamics using laser pulses of multiple colors, complex polarization properties, ultrashort duration and high intensity. This thesis makes use of such tailored laser fields to study different aspects of atomic light-matter interaction within the strong-field regime. Particularly, the first part of the thesis explores high-harmonic generation driven by circularly polarized driving fields, where the tailored field is composed of a circularly polarized infrared pulse and its second harmonic with opposite circular polarization, often denoted as 'bicircular' driving field. We measure the polarization of bicircularly generated harmonics by means of spectrally resolved polarimetry using a self-developed polarimeter and present a scheme, which allows to fully reconstruct the Stokes vector of the highly circularly polarized harmonics. We further demonstrate for the first time, that the bicircular scheme is also applicable within the regime of few-cycle driving pulses. Applying driving fields containing only a few carrier oscillations, we present the generation of a broadband harmonic spectrum with highly elliptically polarized spectral content, supporting the generation of an isolated attosecond pulse. The second part of the thesis focuses on strong-field excitation of an atom by an intense laser pulse. When the ponderomotive shift of a sufficiently intense laser pulse induces resonant excitation of a Stark-shifted atomic state at both the leading and trailing edge of the pulse, fundamental quantum mechanics dictates that the electron wave packets excited at these instances must interfere. By varying the delay between the instances, we observe the interference pattern known as Stückelberg oscillations which holds valuable information about the ionization rate of strongly driven atomic states.
20

Ultrafast spectroscopy and control of quantum dynamics in tailored multicolor laser fields

Mayer, Nicola 17 April 2024 (has links)
In den letzten Jahrzehnten haben Tischlaserquellen eine bemerkenswerte Entwicklung durchlaufen. Sie sind nun in der Lage, maßgeschneiderte ultrakurze Mehrfarben-Laserpulse zu erzeugen, die es ermöglichen, die elektronische Dynamik in Materialien auf ihrer natürlichen Zeitskala von Attosekunden zu untersuchen. In dieser Arbeit werden verschiedene Kombinationen von elektrischen Feldern genutzt, von extrem-ultravioletten (XUV) bis nahinfraroten Wellenlängen, um komplexe Elektronendynamiken in Atomen und chiralen Medien zu erforschen, zu rekonstruieren und zu kontrollieren. Dabei werden grundlegende Konzepte der Licht-Materie-Wechselwirkung eingeführt, einschließlich starker Feldprozesse, die im Kern der Attosekundenspektroskopie liegen. Ein Schwerpunkt liegt auf der Nutzung eines XUV-Pulses in Kombination mit einem nahinfraroten Puls, um den Bevölkerungstransfer zu hohen Drehimpulszuständen in Heliumatomen zu untersuchen. Durch Manipulation der Laserparameter wird die Rolle des AC Stark-Effekts von gebundenen Zuständen in der beobachteten Dynamik identifiziert. Weitere Untersuchungen umfassen die Verwendung eines bicirculären elektrischen Feldes zur Induktion von HHG in Argon, wobei Anzeichen einer starken Feldfangung von Elektronen in angeregten Zuständen im HHG-Spektrum entdeckt werden. Die Arbeit zeigt die entscheidende Rolle angeregter Zustände in der HHG auf. Zusätzlich wird die Anwendung synthetischer chiraler Felder erforscht, um Chiralität auf achirale Objekte wie Atome zu übertragen, und es wird eine Verbindung zwischen synthetischen chiralen Feldern und strukturiertem Licht hergestellt. / In recent decades table-top laser sources have undergone remarkable development and are now capable of generating tailored ultrashort multicolor laser pulses, enabling the study of electronic dynamics in materials on their natural timescale of the attoseconds. In this thesis work various combinations of electric fields spanning from extreme-ultraviolet (XUV) to near-infrared wavelengths are used to investigate, reconstruct and control complex electron dynamics in atoms and chiral media. The initial chapter of this thesis introduces the fundamental concepts underlying light-matter interaction, including strong field processes which lie at the core of attosecond spectroscopy. The second chapter focuses on the utilization of an XUV pulse combined with a near-infrared pulse to study population transfer to high angular momentum states in helium atoms. By manipulating laser parameters, the study identifies the significant role played by the AC Stark shift of bound states in the observed dynamics. In the third chapter a bicircular electric field is employed to induce HHG in argon. Changing the timedelay between the two frequencies, indications of strong field trapping of electrons in excited states are uncovered within the HHG spectrum, confirming the existence of long-lived trajectories lasting multiple optical cycles. The study conclusively demonstrates the crucial role of excited states in HHG. The fourth chapter explores the application of synthetic chiral fields—whose polarization traces a chiral curve over the optical cycle—to imprint chirality on achiral objects such as atoms, both in the low- and strong-field regime. Moreover, the thesis establishes a connection between synthetic chiral fields and structured light, introducing chiral vortex beams with azimuthally varying handedness.

Page generated in 0.0702 seconds