Spelling suggestions: "subject:"stronglycoupled plasma"" "subject:"strongcoupled plasma""
1 |
Theory of collisional transport in ultracold neutral plasmasShaffer, Nathaniel R 01 December 2018 (has links)
Ultracold neutral plasmas (UNP) are laboratory plasmas formed by the photoionization of a magneto-optically trapped and cooled gas. Because of their unusually low temperatures, UNPs are an example of a strongly coupled plasma, meaning that the potential energy of Coulomb interactions between particles is comparable to or greater than their thermal kinetic energy. In the field of strongly coupled plasmas, which also includes dense plasmas found in astrophysics and inertial confinement fusion experiments, there is a pressing need to better understand the collisional transport of matter, momentum, and energy between electrons and ions. The main result of this thesis is to demonstrate the existence of a new physical effect that significantly influences the electron-ion collision rates of strongly coupled plasmas. The essence of the effect is that the electron-ion collision rate depends explicitly on the sign of the colliding charges. This runs counter to both traditional plasma kinetic theory and modern extensions to strong coupling, all of which predict collision rates that do not depend on the sign of the electron-ion interaction. The effect is similar to a phenomenon observed charged-particle stopping known as the Barkas effect.
The existence of the Barkas effect in the electron-ion collision rate of strongly coupled plasmas is first demonstrated using molecular dynamics (MD) simulations. A non-equilibrium simulation methodology is developed to extract the electron-ion collision frequency from the relaxation of an induced electron drift velocity. The simulations are carefully designed to ensure that the relaxation process can be modeled with a constant relaxation rate, which facilitates comparison with theoretical predictions developed later in the thesis. The Barkas effect becomes apparent when these simulations are repeated with positrons in place of electrons. It is seen that the positron-ion collision rate is always lower than the equivalent electron-ion one, and that this charge-sign asymmetry widens rapidly with increasing electron (or positron) coupling strength.
It is hypothesized that the observed Barkas effect can be explained by accounting for plasma screening in the kinematics of binary electron-ion collisions. This is the main tenet of Effective Potential Theory (EPT), which assumes transport occurs through binary collisions governed by the potential of mean force. In order to apply EPT to electron-ion transport in UNPs, several new theoretical developments are made. First, it is demonstrated that EPT is able to accurately predict near-equilibrium transport in ionic mixtures as compared with equilibrium MD simulations. Next, a previously proposed model for the potentials of mean force in two-temperature positron-ion plasma is validated using a new two-thermostat MD methodology. Finally, EPT is applied to electron-ion transport in UNPs using a semi-analytic mapping between a two-component plasma and a screened one-component plasma system, which alleviates numerical difficulties in the theory associated with attractive interactions. The EPT predictions for the electron-ion and positron-ion relaxation rates are in excellent agreement with the MD simulations over the range of coupling strengths attained in present-day UNP experiments. EPT is thus shown to be the first transport theory for strongly coupled plasmas that accounts for the close-interaction physics that give rise to the Barkas effect in electron-ion transport.
|
2 |
Microscopic dynamics in two-dimensional strongly-coupled dusty plasmasFeng, Yan 01 July 2010 (has links)
A strongly-coupled plasma is a collection of free charged particles that interact with a Coulomb repulsion that is so strong that nearby particles do not easily move past one another. Unlike weakly-coupled plasmas, strongly-coupled plasmas exhibit a self-organization of particles into an arrangement like a solid crystalline lattice or a liquid.
Dusty plasmas consist of micron-size particles of solid matter that are immersed in a plasma of electrons and ions. The dust particles gain a large electric charge and become strongly coupled. The motion of discrete particles can be tracked using a video microscopy diagnostic. Dusty plasma experiments allow a study of strongly-coupled plasma physics and an experimental simulation of condensed matter physics. Experiments are reported using a single layer of particles in the plasma to study two-dimensional (2D) physics.
It is demonstrated experimentally that in addition to the solid and liquid states, a strongly-coupled dusty plasma can exist in an exotic state called a superheated solid. A 2D dusty plasma, initially self-organized in a crystalline lattice, is heated rapidly by rastered laser beams. The suspension remains in a solid lattice at a temperature well above the melting point.
Shear-induced melting is studied in a 2D dusty plasma by applying shear to a crystalline lattice using a pair of oppositely-directed laser beams. Unexpectedly, coherent longitudinal waves are also excited in the resulting shear flow. In the first experiment of its kind, a suddenly-applied shear is found to produce a melting front that spreads at the transverse sound speed.
The viscoelasticity of strongly-coupled plasmas in a liquid state is quantified. In the first experiment for any kind of physical system, the wavenumber-dependent viscosity, η(k), is computed from measurements of the random motion of particles. It is found that η(k) diminishes with increasing k, indicating that viscous behavior is gradually replaced by elastic behavior as the scale length is reduced.
As a tool for studying transport at a microscopic level, the self-intermediate scattering function (self-ISF) is used in numerical simulations of 2D dusty plasmas. Two physical processes are studied using the self-ISF: relaxation of random motion, and melting. The wavenumber-dependence of the relaxation time in a liquid-phase strongly-coupled plasma is shown to be useful for distinguishing normal and anomalous diffusion. The self-ISF is also demonstrated to be a sensitive indicator of the melting transition.
An improved image-analysis method is developed for calculating particle positions with minimal measurement errors. This development also provides an understanding of sources of error and the dependence on parameters that the experimenter can control.
|
3 |
TheDynamical Structure Functions of Strongly Coupled Binary Charged Systems:Silvestri, Luciano Germano January 2019 (has links)
Thesis advisor: Gabor J. Kalman / Mixtures of charged particles, where the components have different charge numbers (Z_A ), masses (m_A ) and densities (n_A ), with A = 1, 2 denoting the components, occur in Nature in a great variety. To be sure, even the simplest plasmas are necessarily multicomponent systems, consisting of negative and positive charges. This feature is, however, obscured within the centrally important and popular OCP (one component plasma) or jellium models, where the role of one of the components is reduced to providing a neutralizing background. When this background is inert, one is led to the Coulomb OCP model, while when the background is polarizable (such as an electron gas surrounding heavy particles), to a Yukawa OCP (YOCP), with a screened Yukawa potential replacing the Coulomb potential between the dynamically active particles. There are, however situations of physical importance, where the OCP description is inadequate and a genuine two component description of a plasma composed of two species is required. This Thesis focuses on the study of the dynamics of many-body systems consisting of two components of like charges (all the Z_A -s being of the same signature) in a neutralizing background. The methodology is based upon parallel attacks through theoretical analysis and Molecular Dynamics (MD) simulations, the latter yielding the capability of instant verification of the former. The investigation involves the study of the partial (i.e. species by species) structure functions S_AB (k, ω) and current-current correlation functions L_AB (k, ω). The Fluctuation–Dissipation Theorem (FDT) con- nects these quantities to the total and partial response functions χ_AB (k, ω) (matrices in species space), which are instrumental in the description of the collective mode excitations of the system. This analysis has revealed an entirely novel feature: both S_11 (k, ω) and S_22 (k, ω) exhibit very sharp and deep (several orders of magnitude) minima in the strongly coupled liquid phase at robust characteristic frequencies of the system, which are virtually coupling independent. The FDT then demands that these anti-resonances show up as well in the imaginary part of the partial density response function χ_AB (k, ω). Our theoretical analysis, based on the Quasi-Localized Charge Approximation (QLCA), has confirmed that this is indeed the case. These anti-resonant frequencies being related to the dissipative part of the response, require a physical description of the principal source of dissipation. This has been identified as the inter-species momentum transfer, governed by drag between the microscopic current fluctuations of the two species. The description of this effect was incorporatedv in the QLCA formalism, making it possible to derive a closed analytic representation of the fluctuation spectra in the frequency domain of interest and compare them with the results of the MD simulations. Other important novel concepts, such as the idea of coupling dependent effective mass, fast vs. slow sound, the mechanism of tran- sition from short-range to long-range interaction have been identified and analyzed. Furthermore, the investigation of the dynamics has led to the first comprehensive description of the mode structures of classical binary Coulomb and Yukawa mixtures at arbitrary coupling values, which has been a longstanding problem in statistical plasma physics. Focusing on the longitudinal excitations, we describe the transition from weak coupling (where one is acquainted with the RPA result yielding only the single plasmon mode in the Coulomb case or a single acoustic mode in the Yukawa case) to strong coupling, with a doublet of modes that arise from the complex rel- ative motion between the two components, as affected by the interaction with the background. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
4 |
Ion Friction at Small Values of the Coulomb LogarithmSprenkle, Robert Tucker 01 July 2018 (has links)
We create a dual-species ultracold neutral plasma (UNP) by photo-ionizing Yb and Ca atoms in a dual-species magneto-optical trap. Unlike single-species UNP expansion, these plasmas are well outside of the collisionless (Vlasov) approximation. We observe the mutual interaction of the Yb and Ca ions by measuring the velocity distribution for each ion species separately. We model the expansion using a fluid code including ion-ion friction and compare with experimental results to obtain a value of the Coulomb logarithm of Λ= 0.04.
|
5 |
Molecular dynamics simulations of the equilibrium dynamics of non-ideal plasmasMithen, James Patrick January 2012 (has links)
Molecular dynamics (MD) simulations are used to compute the equilibrium dynamics of a single component fluid with Yukawa interaction potential v(r) = (Ze)^2 exp(−r/λs )/4π eps_0 r. This system, which is known as the Yukawa one-component plasma (YOCP), represents a simplified description of a non-ideal plasma consisting of ions, charge Ze, and electrons. For finite screening lengths λs, the MD results are used to investigate the domain of validity of the hydrodynamic description, i.e., the description given by the Navier-Stokes equations. The way in which this domain depends on the thermodynamic conditions of the YOCP, as well as the strength and range of the interactions, is determined. Remarkably, it is found that the domain of validity is completely determined by the range of the interactions (i.e., λs); this alone determines the maximum wave number k_max at which the hydrodynamic description is applicable. The dynamics of the YOCP at wavevectors beyond k_max are then investigated; these are shown to be in striking agreement with a simple and well known generalisation of the Navier-Stokes equations. In the extreme case of the Coulomb interaction potential (λs = ∞), the very existence of a hydrodynamic description is a known but unsolved problem [Baus & Hansen, 1980]. For this important special case, known as the one-component plasma (OCP), it is shown that the ordinary hydrodynamic description is never valid. Since the OCP is the prototypical system representing a non-ideal plasma, a number of different approaches for modelling its dynamics have been formulated previously. By computing the relevant quantities with MD, the applicability of a number of models proposed in the literature is examined for the first time.
|
6 |
レ-ザ-冷却された-成分プラズマの物性庄司, 多津男, 坂和, 洋一, 門田, 清, 三重野, 哲 07 1900 (has links)
科学研究費補助金 研究種目:一般研究(B)→基盤研究(B) 課題番号:07458091 研究代表者:庄司 多津男 研究期間:1995-1996年度
|
Page generated in 0.0685 seconds