• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-dimensional Guided Mode Resonant Structures For Spectral Filtering Applications

Boonruang, Sakoolkan 01 January 2007 (has links)
Guided mode resonant (GMR) structures are optical devices that consist of a planar waveguide with a periodic structure either imbedded in or on the surface of the structure. The resonance anomaly in GMR structures has many applications as dielectric mirrors, tunable devices, sensors,and narrow spectral band reflection filters. A desirable response from a resonant grating filter normally includes a nearly 100% narrowband resonant spectral reflection (transmission), and a broad angular acceptance at either normal incidence or an oblique angle of incidence. This dissertation is a detailed study of the unique nature of the resonance anomaly in GMR structures with two-dimensional (2-D) periodic perturbation. Clear understanding of the resonance phenomenon is developed and novel 2-D GMR structures are proposed to significantly improve the performance of narrow spectral filters. In 2-D grating diffraction, each diffracted order inherently propagates in its distinct diffraction plane. This allows for coupled polarization dependent resonant leaky modes with one in each diffraction plane. The nature of the interaction between these non-collinear guides and its impact on spectral and angular response of GMR devices is investigated and quantified for 2-D structures with rectangular and hexagonal grids. Based on the developed understanding of the underlying phenomenon, novel GMR devices are proposed and analyzed. A novel controllable multi-line guided mode resonant (GMR) filter is proposed. The separation of spectral wavelength resonances supported by a two-dimensional GMR structure can be coarse or fine depending on the physical dimensions of the structure and not the material properties. Multiple resonances are produced by weakly guided modes individually propagating along multiple planes of diffraction. Controllable two-line and three-line narrow-band reflection filter designs with spectral separation from a few up to hundreds of nanometers are exhibited using rectangular-lattice and hexagonal-lattice grating GMR structures, respectively. Broadening of the angular response of narrow band two-dimension guided mode resonant spectral filters, while maintaining a narrow spectral response, is investigated. The angular response is broadened by coupling the diffracted orders into multiple fundamental guided resonant modes. These guided modes have the same propagation constant but propagating in different planes inherent in multiple planes of diffraction of the 2-D gratings. The propagation constants of the guided resonant modes are determined from the physical dimensions of the grating (periodicity and duty cycle) and the incident direction. A five-fold improvement in the angular tolerance is achieved using a grating with strong second Bragg diffraction in order to produce a crossed diffraction. A novel dual grating structure with a second grating located on the substrate side is proposed to further broaden the angular tolerance of the spectral filter without degrading its spectral response. This strong second Bragg backward diffraction from the substrate grating causes two successive resonant bands to merge producing a resonance with symmetric broad angular response.
2

Composants nanostructurés pour le filtrage spectral à l’échelle du pixel dans le domaine infrarouge / Nanostructured components for pixel-sized filtering in the infrared domain

Bierret, Antoine 13 December 2017 (has links)
L'analyse spectrale d'une scène infrarouge permet une meilleure identification des objets la composant. Il est possible d'obtenir du filtrage spectral grâce à des résonances optiques au sein de nanostructures. Cette thèse traite de l'utilisation de structures à réseau sub-longueur d'onde pour obtenir des filtres spectraux à l'échelle d'un pixel de détection. Je me suis concentré sur l'étude de filtres à résonance de mode guidé, constitué d'un réseau de couplage associé à une couche mince diélectrique, qui nécessite typiquement de grandes surfaces pour fonctionner. J'ai mené une étude numérique du comportement spectral et angulaire de ces structures et j'ai envisagé deux possibilités pour obtenir un filtrage sur de petites dimensions: l'utilisation d'une cavité résonante dans le guide d'onde à l'aide de miroirs latéraux et l'utilisation de réseaux métalliques.L'analyse numérique de la réponse optique des structures à réseau métallique montre qu'il est possible d'obtenir une extension spatiale limitée du champ électromagnétique dans le guide d'onde à la résonance. Grâce à cette faible extension, j'ai pu étudier numériquement des filtres à résonance de mode guidé foisonnants sur des longueurs aussi faibles que 30 µm. J'ai aussi pu établir un processus de fabrication en salle blanche puis caractériser des filtres de la taille d'un pixel de détection infrarouge.Finalement, j'ai étudié la possibilité de fabriquer des mosaïques de filtres à résonance de mode guidé pour le filtrage spectral à proximité d'un détecteur plan focal. J'ai pu démontrer que les dimensions, les transmissions résonantes et les tolérances angulaires de ces filtres les rendent compatibles avec une telle utilisation. J'ai alors pu montrer un exemple d'architecture simple de caméra multi-spectrale infrarouge mettant en jeu une mosaïque de filtres à résonance de mode guidé. / Spectral analysis of an infrared scene allows for a better identification of its components. Nanotechnologies offer new opportunities to achieve spectral filtering thanks to optical resonances. In this thesis, I use sub-wavelength gratings to achieve spectral filtering on areas as small as a pixel. I focused on the study of guided-mode resonance filters, made of a coupling grating and a thin dielectric layer acting as a waveguide. This structure typically needs large surfaces to filter infrared light. However, I proposed two possible modifications of this structure: either using a resonant cavity or using metallic gratings.Numerical analysis of the optical response of structures with a metallic grating showed that the spatial extension of the electromagnetic field is limited at the resonant wavelength. Thanks to this short extension, I is possible to achieve filtering with only 30 µm-long guided-mode resonance filters. I also fabricated and characterized those pixel-sized filters.Finally, I studied mosaics of small guided-mode resonance filters. I showed that the dimensions, the resonant transmissions and the angular acceptance of those mosaics are compatible with using them inside multi-spectral cameras. I also showed a sample architecture for an infrared multispectral-camera using a mosaics of guided-mode resonance filters.
3

Development and functionalization of subwavelength grating metamaterials in silicon-based photonic integrated circuits / Development and functionalization of SWG metamaterials in Si-based PICs

Naraine, Cameron Mitchell January 2024 (has links)
Silicon photonics (SiP) has become a cornerstone technology of the modern age by leveraging the mature fabrication processes and infrastructure of the microelectronics industry for the cost-effective and high-volume production of compact and power-efficient photonic integrated circuits (PICs). The impact that silicon (Si)-based PICs have had on data communications, particularly data center interconnection and optical transceiver technologies, has encouraged SiP chip development and their use in other applications such as artificial intelligence, biomedical sensing and engineering, displays for augmented/virtual reality, free-space communications, light detection and ranging, medical diagnostics, optical spectroscopy, and quantum computing and optics. To expand the functionality and improve the performance of SiP circuits for these surging applications, subwavelength grating (SWG) metamaterials have been thoroughly investigated and implemented in various passive integrated photonic components fabricated on the silicon-on-insulator (SOI) platform. SWG metamaterials are periodic structures composed of two materials with different permittivities that exhibit unnatural properties by using a period shorter than the guided wavelength of light propagating through them. The ability to synthesize the constituent SiP materials without any need to alter standard fabrication procedures enables precise, flexible control over the electromagnetic field and sophisticated selectively over anisotropy, dispersion, polarization, and the mode effective index in these metastructures. This provides significant benefits to SOI devices, such as low loss mode conversion and propagation, greater coupling efficiencies and alignment tolerances for fiber-chip interfaces, ultrabroadband operation in on-chip couplers, and improved sensitivities and limits of detection in integrated photonic sensors. Parallel to the rise of SiP technology is the development of other materials compatible with mature PIC fabrication methods both in the foundry (e.g., silicon nitride (Si3N4)) and outside the foundry (e.g., high-index oxide glasses such as aluminum oxide (Al2O3) and tellurium oxide (TeO2)). Si3N4 offsets the pitfalls of Si as a passive waveguiding material, providing lower scattering and polarization-dependent losses, optical transparency throughout the visible spectrum, increased tolerance to fabrication error, and better handling of high-power optical signals. Meanwhile, Al2O3 and TeO2 both serve as excellent host materials for rare-earth ions, and TeO2 possesses strong nonlinear optical properties. Using a single-step post-fabrication thin film deposition process, these materials can be monolithically integrated onto Si PICs at a wafer scale, enabling the realization of complementary-metal-oxide-semiconductor (CMOS)-compatible, hybrid SiP devices for linear, nonlinear, and active functionalities in integrated optics. While SWG metamaterials have widely impacted the design space and applicability of integrated photonic devices in SOI, they have not yet made their mark in other material systems outside of Si. Furthermore, demonstrations of their capabilities in active processes, including optical amplification, are still missing. In this thesis, we present a process for developing various SWG metamaterial-engineered integrated photonic devices in different material systems both within and beyond SOI. The demonstrations in this thesis emphasize the benefits of SWG metamaterials in these devices and realize their potential for enhancing functionality in applications such as sensing and optical amplification. The objective of the thesis is to highlight the prospects of SWG metamaterial implementation in different media used in integrated optics. This is accomplished by experimentally demonstrating SWG metamaterial waveguides, ring resonators and other components composed of different hybrid core-cladding material systems, including Si-TeO2 and Si3N4-Al2O3. Chapter 1 introduces the background and motivation for integrated optics and SWG metamaterials and provides an overview and comparison of the different materials explored in this work. Chapter 2 presents an initial experimental demonstration of TeO2-coated SOI SWG metamaterial waveguides and mode converters. It also details the design of fishbone-style SWG waveguides aimed at lowering loss and enhancing mode overlap with the active TeO2 cladding material in the hybrid SiP platform. Chapter 3 details an open-access Canadian foundry process for rapid prototyping of Si3N4 PICs, emphasizing the Si3N4 material and waveguide fabrication methods, as well as the design and characterization of various integrated photonic components included in a process design kit. The platform is compared against other Si3N4 foundries, and plans for further development are also discussed. Chapter 4 reports the first demonstration of SWG metamaterial waveguides and ring resonators fabricated using a Si3N4 foundry platform. The measured devices have a propagation loss of ∼1.5 dB/cm, an internal quality factor of 2.11·10^5, and a bulk sensitivity of ∼285 nm/RIU in the C-band, showcasing competitive metrics with conventional Si3N4 waveguides and SWG ring resonators and sensors reported in SOI. Chapter 5 presents work towards an SWG metamaterial-engineered waveguide amplifier. The fabricated device, based in Si3N4 and functionalized by an atomic layer deposited, erbium-doped Al2O3 thin film cladding, exhibited a signal enhancement of ∼8.6 dB, highlighting its potential for on-chip optical amplification. Methods to reduce the loss within the material system are proposed to achieve net gain in future devices. Chapter 6 summarizes the thesis and discusses pathways for optimizing the current devices as well as avenues for exploring new and intriguing materials and devices for future applications in integrated photonics. / Thesis / Doctor of Philosophy (PhD)
4

Combinaison cohérente de lasers à cascade quantique / Coherent combining of quantum cascade lasers

Bloom, Guillaume 14 February 2012 (has links)
Des applications comme les contre-mesures optiques nécessitent des sources puissantes et avec une bonne qualité de faisceau dans le moyen infrarouge. Le laser à cascade quantique (LCQ) est une solution prometteuse mais la puissance fournie par ces lasers n’est pas suffisante. La combinaison cohérente de plusieurs de ces sources devrait permettre de sommer leurs puissances tout en conservant la qualité de faisceau d’un émetteur unique et constitue donc une solution intéressante pour contourner l’actuelle limitation en puissance des LCQ.Nous présentons une étude théorique et expérimentale de la combinaison de faisceaux cohérente de LCQ dans une cavité externe commune utilisant un coupleur de faisceaux. La mise en phase est ici totalement passive puisque fondée sur la minimisation des pertes dans la cavité globale : on parle d’auto-organisation. Un modèle général permettant de quantifier l’efficacité de combinaison et la stabilité de telles cavités est développé. Dans un premier temps, on montre expérimentalement que la combinaison cohérente de deux LCQ dans une cavité Michelson est une solution efficace et stable. Pour combiner plus d’émetteurs il est nécessaire de concevoir des coupleurs de faisceaux dans le moyen infrarouge efficaces. Pour cela, nous avons étudié deux types de réseaux : les réseaux de phase binaire (réseaux de Dammann) et des structures à gradient d’indice composées de motifs sub-longueur d’onde. Le dessin et l’optimisation de telles structures fait appel à la théorie des milieux artificiels et nécessite l’utilisation d’un code de résolution rigoureuse des équations de Maxwell (RCWA). Enfin, la combinaison cohérente de cinq LCQ en cavité externe avec un coupleur de faisceaux est démontrée expérimentalement et la combinaison d’un plus grand nombre de LCQ est discutée. En conclusion, nous présentons une solution originale pour réaliser la combinaison cohérente passive de LCQ et ainsi apporter une solution à l’augmentation de puissance dans le moyen infrarouge. / Powerful sources in the mid-infrared with a good beam quality are highly needed for applications such as optical countermeasures. The quantum cascade laser (QCL) is a promising solution but the maximum power achievable is not sufficient. The coherent beam combining of several QCL could lead to higher output power in the same beam and thus is an interesting solution to circumvent the current power limitation of these sources.We present a theoretical and experimental study of the coherent beam combining of QCL in a common external cavity with a beam combiner. The phase locking is totally passive since it is only based on loss minimization in the external cavity: it is a self-organization process. A general model is developed to quantify the combining efficiency and the stability that can be obtained from this method. Experimentally, the coherent combining of two QCL in a Michelson cavity is studied first and demonstrated to be efficient and stable. In order to combine more emitters, an efficient beam combiner must be designed in the mid-infrared. For that purpose, two type of gratings, a classical binary phase grating (or Dammann grating) and a more complex gradient-index structure made of local sub-wavelength patterns are designed and compared. The calculation and optimization of this sub-wavelength structure is based on the artificial media theory and is achieved with rigorous coupled wave analysis (RCWA). Finally, the coherent combining of five QCL in an external cavity with a binary phase grating is demonstrated and the scalability to the combining of more emitters is discussed. In conclusion, we present an original solution to combine coherently several QCL and thus address the power scaling issue in the mid-infrared.
5

Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations

Nikkhah, Hamdam January 2018 (has links)
The widespread adoption of photonic circuits requires the economics of volume manufacturing offered by integration technology. A Complementary Metal-Oxide Semiconductor compatible silicon material platform is particularly attractive because it leverages the huge investment that has been made in silicon electronics and its high index contrast enables tight confinement of light which decreases component footprint and energy consumption. Nevertheless, there remain challenges to the development of photonic integrated circuits. Although the density of integration is advancing steady and the integration of the principal components – waveguides, optical sources and amplifiers, modulators, and photodetectors – have all been demonstrated, the integration density is low and the device library far from complete. The integration density is low primarily because of the difficulty of confining light in structures small compared to the wavelength which measured in micrometers. The device library is incomplete because of the immaturity of hybridisation on silicon of other materials required by active devices such as III-V semiconductor alloys and ferroelectric oxides and the difficulty of controlling the coupling of light between disparate material platforms. Metamaterials are nanocomposite materials which have optical properties not readily found in Nature that are defined as much by their geometry as their constituent materials. This offers the prospect of the engineering of materials to achieve integrated components with enhanced functionality. Metamaterials are a class of photonic crystals includes subwavelength grating waveguides, which have already provided breakthroughs in component performance yet require a simpler fabrication process compatible with current minimum feature size limitations. The research reported in this PhD thesis advances our understanding of the structure-property relations of key planar light circuit components and the metamaterial engineering of these properties. The analysis and simulation of components featuring structures that are only just subwavelength is complicated and consumes large computer resources especially when a three dimensional analysis of components structured over a scale larger than the wavelength is desired. This obstructs the iterative design-simulate cycle. An abstraction is required that summarises the properties of the metamaterial pertinent to the larger scale while neglecting the microscopic detail. That abstraction is known as homogenisation. It is possible to extend homogenisation from the long-wavelength limit up to the Bragg resonance (band edge). It is found that a metamaterial waveguide is accurately modeled as a continuous medium waveguide provided proper account is taken of the emergent properties of the homogenised metamaterial. A homogenised subwavelength grating waveguide structure behaves as a strongly anisotropic and spatially dispersive material with a c-axis normal to the layers of a one dimensional multi-layer structure (Kronig-Penney) or along the axis of uniformity for a two dimensional photonic crystal in three dimensional structure. Issues with boundary effects in the near Bragg resonance subwavelength are avoided either by ensuring the averaging is over an extensive path parallel to boundary or the sharp boundary is removed by graded structures. A procedure is described that enables the local homogenised index of a graded structure to be determined. These finding are confirmed by simulations and experiments on test circuits composed of Mach-Zehnder interferometers and individual components composed of regular nanostructured waveguide segments with different lengths and widths; and graded adiabatic waveguide tapers. The test chip included Lüneburg micro-lenses, which have application to Fourier optics on a chip. The measured loss of each lens is 0.72 dB. Photonic integrated circuits featuring a network of waveguides, modulators and couplers are important to applications in RF photonics, optical communications and quantum optics. Modal phase error is one of the significant limitations to the scaling of multimode interference coupler port dimension. Multimode interference couplers rely on the Talbot effect and offer the best in-class performance. Anisotropy helps reduce the Talbot length but temporal and spatial dispersion is necessary to control the modal phase error and wavelength dependence of the Talbot length. The Talbot effect in a Kronig-Penny metamaterial is analysed. It is shown that the metamaterial may be engineered to provide a close approximation to the parabolic dispersion relation required by the Talbot effect for perfect imaging. These findings are then applied to the multimode region and access waveguide tapers of a multi-slotted waveguide multimode interference coupler with slots either in the transverse direction or longitudinal direction. A novel polarisation beam splitter exploiting the anisotropy provided by a longitudinally slotted structure is demonstrated by simulation. The thesis describes the design, verification by simulation and layout of a photonic integrated circuit containing metamaterial waveguide test structures. The test and measurement of the fabricated chip and the analysis of the data is described in detail. The experimental results show good agreement with the theory, with the expected errors due to fabrication process limitations. From the Scanning Electron Microscope images and the measurements, it is clear that at the boundary of the minimum feature size limit, the error increases but still the devices can function.

Page generated in 0.1046 seconds