• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 12
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular tools for elucidating copper biochemistry: Water-soluble fluorescent probes and robust affinity standards

Morgan, M. Thomas 09 April 2013 (has links)
Copper is an essential trace element for living organisms and has both known and additional suspected roles in human health and disease. The current understanding of copper metabolism is substantial but incomplete, particularly in regard to storage and exchange at the subcellular level, although available evidence indicates exchangeable intracellular copper is in the monovalent oxidation state. Selective fluorescent probes with sufficient sensitivity to detect Cu(I) availability at physiologically relevant levels and at subcellular resolution would be valuable tools for studying copper metabolism. As a contribution toward this goal, this work describes the development of Cu(I)-selective fluorescent probes with greatly improved aqueous solubility, contrast ratio, and fluorescence quantum yield. This work also describes the development of water-soluble, 1:1-binding chelators that form colorless, air-stable copper(I)-complexes. By acting as copper(I) buffering agents and affinity standards, these compounds can serve a complementary role to fluorescent probes in the study of copper biochemistry.
22

Asymmetrische Synthese von cyclischen allylischen S-tert-Butylsulfonen: Pd-katalysierte kinetische Racematspaltung racemischer Allylcarbonate und zur Struktur chiraler, cyclischer allylischer a-tert-Butylsulfonyl-Carbanionen

Spalthoff, Nicole. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
23

Or et azacycles : vers la synthèse totale de molécules naturelles / Gold and azacycles : toward the total synthesis of natural products

Miaskiewicz, Solène 03 February 2017 (has links)
La Nature est une source quasi inépuisable de molécules possédant des propriétés biologiques souvent remarquables. Ainsi, les plantes fournissent chaque jour de nouvelles structures dont les chimistes s’inspirent afin de créer de façon synthétique des molécules similaires ou dérivées pouvant avoir de potentielles applications en tant qu’agents thérapeutiques par exemple.L’émergence de la catalyse organométallique a permis d’améliorer considérablement les méthodes de synthèse de molécules complexes. La catalyse homogène à l’or, dont le potentiel n’a été exploité qu’à partir des années 2000, a prouvé son efficacité pour effectuer de nombreuses réactions permettant de créer plusieurs liaisons carbone-carbone ou carbone-hétéroatome en une étape. Les conditions douces et la grande tolérance des catalyseurs d’or vis-à-vis de groupements fonctionnels divers ont naturellement mené à l’application de la catalyse à l’or à la synthèse de produits naturels. Ces études s’inscrivent dans cette dynamique et exploitent la réactivité d’azacycles contraints et d’alcynes en présence d’or(I) pour former des squelettes hétérocycliques couramment rencontrés au sein de produits naturels. La réactivité particulière des groupements sulfonyles protecteurs de l’azote a également été étudiée pour synthétiser différentes molécules azabicycliques. Les méthodes de synthèse mises au point ont finalement été appliquées à la synthèse de molécules cibles. / Nature is a nearly endless source of molecules, often possessing remarkable biological properties. Thus, plants provide new structures every day, inspiring chemists to synthetically create similar molecules or analogs, which are potential therapeutic agents for example. The emergence of organometallic chemistry allowed for considerable improvement of synthetic methods to make complex molecular scaffolds. Homogeneous gold catalysis, whose potential has only been explored starting from 2000, proved its efficiency to make numerous reactions. Most of them can generate several carbon-carbon or carbon-heteroatom bonds in one step. Soft conditions as well as good tolerance of gold catalysts toward multiple functional groups naturally led to the application of gold-catalyzed steps in various total syntheses of natural products.The present study evolves in this context and explores the reactivity of strained azacycles and alkynes in the presence of gold(I) to form heterocyclic skeletons that are commonly found in natural products. The specific reactivity of sulfonyl nitrogen-protecting groups has also been studied to synthesize azabicyclic compounds. The application of those various new methodologies to the synthesis of target molecules has finally been studied.
24

Synthesis of Diazonium N-(Perfluoroalkyl) Benzenesulfonimide Polymers for Proton Exchange Membrane Fuel Cells (PEMFCs)

Alharbi, Helal 01 August 2019 (has links)
The objective of the research is to synthesize the diazonium N-(perfluoroalkyl) benzenesulfonimide (PFSI)zwitterionicpolymers as electrolytes in polymerelectrolyte membrane (PEM) fuel cells. The proposed diazoniumPFSI zwitterionic polymer (I) is expected to enhance the thermal and chemical stability, increase the proton conductivity of electrolytes, and improve the catalyst efficiency for PEM fuel cells. Synthesis of the perfluorobenzoyl peroxide initiator, homopolymerization of perfluoro (3-oxapent-4-ene) sulfonyl fluoride,coupling reaction with4-sulfamonylacetanilide, couplingreaction with 4-nitrobenzene sulfonyl amide, n-deacetylation reaction, and diazotization reactionhave been carried outsuccessfully in the lab. The intermediate chemicals are characterized by GC-MS, IR, NMR, and GPC spectroscopies.
25

Synthesis and Application of Phosphonium Salts as Lewis Acid Catalysts

Guo, Chunxiang 11 August 2021 (has links)
In the first part of this work, a convenient and high yielding synthetic strategy was developed to approach highly electrophilic fluorophosphonium cations as triflate salts. Through in situ electrophilic fluorination of phosphanes with commercially available bench-stable N-fluorobenzenesulfonimide (NFSI), followed by subsequent methylation of the [N(PhSO2)2]- anion with MeOTf, a library of mono-, di- and tri- cationic fluorophosphonium triflates were obtained in excellent yields. The Lewis acidities of all synthesized fluorophosphonium triflates salts were evaluated by both theoretical and experimental methods. These fluorophosphonium triflates have been develop as catalysts for the conversation of formamides into N-sulfonyl formamidines. CHAPTER II of this work focus on developing electrophilic fluorophosphonium cation as Lewis acid pedant in both inter- and intra- molecular FLP systems, as well as exploring their application in small molecular activation and functionalization, such as reversible CO2 sequestration and binding of carbonyls, nitriles and acetylenes. CHAPTER III of this thesis reports on the reaction of electrophilic fluorophosphonium triflates with trimethylsilyl nucleophiles (Me3SiX, X = CN, N3), which selectively yields either pseudohalo-substituted flurophosphoranes or pseudohalo-substituted phosphonium cations.:1. Introduction 1 1.1. Frustrated Lewis Pair chemistry 2 1.2. Phosphorus derivatives as strong Lewis acids 6 2. Objective 11 3. CHAPTER I: Synthesis of fluorophosphonium triflate salts and application as catalyst 15 3.1. Electrophilic fluorination of phosphanes: a convenient approach to electrophilic fluorophosphonium cations 15 3.2. Fluorophilicities and Lewis acidities of the obtained fluorophosphonium derivatives 23 3.2.1. Evaluation of fluorophilicities and Lewis acidities of the obtained fluorophosphonium cations 24 3.2.2. Reactions of fluorophosphonium salts with selected formamides. 27 3.2.3. Reactions of fluorophosphonium salts with selected urea derivatives 31 3.3. Transformation of formamides to N-sulfonyl formamidines using fluorophosphonium triflates as active catalysts 34 4. CHAPTER II: Bifunctional electrophilic fluorophosphonium triflates as intramolecular Frustrated Lewis Pairs 45 5. CHAPTER III: Reaction of fluorophosphonium triflate salts with trimethylsilyl nucleophiles 63 6. Summary 73 7. Perspective 77 8. Experimental section 80 8.1. Materials and methods 80 8.2. Experimental details for CHAPTER I 82 8.2.1. Preparation of imidazoliumyl-substituted phosphanes. 82 8.2.1.1. Preparation of [Ph2LcMeP][OTf] 82 8.2.1.2. Preparation of [Ph2LciPrP][OTf] 83 8.2.1.3. Preparation of [(C6F5)2LcMeP][OTf] 83 8.2.1.4. Preparation of [(C6F5)2LciPrP][OTf] 84 8.2.1.5. Preparation of [PhLcMe2P][OTf]2 85 8.2.1.6. Preparation of [PhLciPr2P][OTf]2 85 8.2.2. Preparation of fluorophosphonium bis(phenylsulfonyl)amide salts 86 8.2.2.1. Preparation of [36(NSI)]. 86 8.2.2.2. Preparation of 58a[NSI] 87 8.2.2.3. Preparation of 58b[N(SO2Ph)2] 88 8.2.3. Preparation of fluorophosphonium triflate salts 88 8.2.3.1. Preparation of 36[OTf] 89 8.2.3.2. Preparation of 36[H(OTf)2] 89 8.2.3.3. Preparation of 58a[OTf] 90 8.2.3.4. Preparation of 58b[OTf] 91 8.2.3.5. Preparation of 58c[OTf] 91 8.2.3.6. Preparation of 59a[OTf] 92 8.2.3.7. Preparation of 59b[OTf] 93 8.2.3.8. Preparation of 60Mea[OTf]2 94 8.2.3.9. Preparation of 60iPra[OTf]2 94 8.2.2.10. Preparation of 60Meb[OTf]2 95 8.2.3.11. Preparation of 60iPrb[OTf]2 96 8.2.3.12. Preparation of 61Me[OTf]3 97 8.2.3.13. Preparation of 61iPr[OTf]3 97 8.2.4. Reaction of fluorophosphonium triflate salts with nucleophiles 98 8.2.4.1. Preparation of 62a[OTf] 98 8.2.4.2. Preparation of 62b[OTf] 99 8.2.4.3. Preparation of 62c[OTf] 100 8.2.4.4. Preparation of 63 100 8.2.4.5. Preparation of 65 101 8.2.4.6. Preparation of 69a[OTf] 102 8.2.4.7. Preparation of 69b[OTf] 103 8.2.5. Synthesis of H[N(SO2R)(SO2Ph)] and corresponding sodium salt 103 8.2.5.1. General procedure for the formation of N-sulfonyl-sulfonamides 103 8.2.5.2. General procedure for the formation of sodium bis(sulfonyl)amides 104 8.2.5.3. Preparation of HN(SO2Ph)2, Na[N(SO2Ph)2] and [nBu4N][N(SO2Ph)2] 104 8.2.5.4. Preparation of 81a and 82a 105 8.2.5.5. Preparation of 81b and 82b 106 8.2.5.6. Preparation of 81c and 82c 106 8.2.5.7. Preparation of 81d and 82d 107 8.2.5.8. Preparation of 81e and 82e 108 8.2.5.9. Preparation of 81f and 82f 108 8.2.5.10. Preparation of 81g and 82g 109 8.2.5.11. Preparation of 81h and 82h 109 8.2.6. Synthesis of N-sulfonyl amidines 110 8.2.6.1. General procedure for the catalytic formation of N-sulfonyl amidines 110 8.2.6.2. Preparation of 64 110 8.2.6.3. Preparation of 72 111 8.2.6.4. Preparation of 73 112 8.2.6.5. Preparation of 74 112 8.2.6.6. Preparation of 75 113 8.2.6.7. Preparation of 76 114 8.2.6.8. Preparation of 77 114 8.2.6.9. Preparation of 78 115 8.2.6.10. Preparation of 79 116 8.2.6.11. Preparation of 80a,b 116 8.2.6.12. Preparation of 83b 117 8.2.6.13. Preparation of 83c 118 8.2.6.14. Preparation of 83d 119 8.2.6.15. Preparation of 83e 119 8.2.6.16. Preparation of 83f 120 8.2.6.17. Preparation of 83g 121 8.2.6.18. Preparation of 83h 122 8.3. Experimental details for CHAPTER II 123 8.3.1. Preparation of N-containing phosphanes 123 8.3.1.1. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)pyridine 123 8.3.1.2. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-1-methylimidazole 124 8.3.1.3. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-N,N-dimethylaniline 124 8.3.2. Preparation of N/P Frustrated Lewis Pairs 125 8.3.2.1. General procedure for the synthesis of N/P-Frustrated Lewis pairs 125 8.3.2.2. Preparation of 85[OTf] 126 8.3.2.3. Preparation of 86[OTf] 126 8.3.2.4. Preparation of 87[OTf] 127 8.3.2.5. Preparation of 88[OTf] 128 8.3.2.6. Preparation of 89[OTf] 129 8.3.3. Synthesis of compound 84[OTf] 130 8.3.4. Reaction of N/P FLP with carbonyls, nitriles or acetylenes 131 8.3.4.1. General reaction conditions for the reaction of N/P FLP with carbonyls and nitriles 131 8.3.4.2. Preparation of 90[OTf] 131 8.3.4.3. Preparation of 91[OTf] 132 8.3.4.4. Preparation of 92[OTf] 133 8.3.4.5. Preparation of 93a[OTf] 134 8.3.4.6. Preparation of 93b[OTf] 134 8.3.4.7. Preparation of 94[OTf] 135 8.3.4.8. Preparation of 95[OTf] 136 8.3.4.9. Preparation of 96[OTf] 137 8.3.4.10. Preparation of 97a[OTf] 138 8.3.4.11. Preparation of 97b[OTf] 139 8.3.4.12. Preparation of 99a[OTf]2 140 8.3.4.13 Preparation of 100b[OTf] 141 8.3.5. Reaction of N/P FLPs with CO2 142 8.3.5.1 Reaction of 85[OTf] with CO2 142 8.3.5.2 Reaction of 86[OTf] with CO2 142 8.4. Experimental details for CHAPTER III 144 8.4.1 Synthesis of 105a,b[OTf] and 106c 144 8.4.1.1. General procedure for the reaction of fluorophosphonium triflate with Me3SiCN 144 8.4.1.2. Preparation of 105a[OTf] 144 8.4.1.3. Preparation of 105b[OTf] 145 8.4.1.4. Preparation of 106c 145 8.4.2. Reaction of fluorophosphonium triflate salt with Me3SiN3 146 8.4.2.1. General procedure for preparation of azidofluorophosphorane 146 8.4.2.2. General procedure for preparation of azidofluorophosphonium triflate salts 146 8.4.2.3. Preparation of 107a[OTf] 146 8.4.2.4. Preparation of 107b[OTf] 147 8.4.2.5. Preparation of 107c[OTf] 147 8.4.2.6. Preparation of 108c 148 8.4.2.7. Preparation of 109[OTf] 149 8.4.2.8. Preparation of 110[OTf]2 149 8.4.2.9. Preparation of 113[OTf]3 150 8.4.2.10. Preparation of 114[OTf] 151 8.4.2.11. Preparation of 115[OTf] 151 8.4.2.12. Preparation of 116[OTf] 152 8.4.3 Transformation of azido-fluorophosphorane under heating conditions 153 8.4.3.1 Preparation of 118 153 8.4.3.2 Preparation of 120a,b[OTf] 154 9. Crystallographic details 156 9.1. X-ray Diffraction refinements 156 9.2. Crystallographic details for CHAPTER I 157 9.3. Crystallographic details for CHAPTER II 169 9.4. Crystallographic details for CHAPTER III 176 10. Computational methods 179 11. Abbreviations 181 12. Nomenclature of compounds according to IUPAC recommendations 183 13. References 187 14. Acknowledgment 205 15. Publications and conference contributions 207 15.1. Peer-reviewed publication 207 15.2. Poster presentations 207 Versicherung 209 Erklärung 209
26

Chemical Derivatization in Combination with Liquid Chromatography Tandem Mass Spectrometry for Detection and Structural Investigation of Glucuronides

Lampinen Salomonsson, Matilda January 2008 (has links)
<p>This thesis presents novel approaches for structural investigation of glucuronides using chemical derivatization in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS<sup>n</sup>).</p><p>Today, LC-ESI-MS<sup>n</sup> is the dominant technique for quantitative as well as qualitative analyses of metabolites, due to its high sensitivity and selectivity. However, for compounds without an easily ionizable group, e.g., steroids, the sensitivity is limited. In the work presented in this thesis, a derivatization procedure forming a basic oxime significantly increased the detection sensitivity for the altrenogest glucuronide. </p><p>Furthermore, in structural evaluations of glucuronides, the limitation of LC-MS<sup>n</sup> becomes evident due to the initial neutral loss of 176 u, i.e. monodehydrated glucuronic acid, which often makes it impossible to elucidate the structures of the conjugates. To solve this problem, the main part of the work described in this thesis was devoted to chemical derivatization as a means of facilitating the determination of the site of conjugation. </p><p>For the first time, the isomeric estriol glucuronides were evaluated using a combination of three reagents 2-chloro-1-methylpyridinium iodide (CMPI), 1-ethyl-3-(3-dimethyl- aminopropyl)-carbodiimide (EDC), and 2-picolylamine (PA). Interestingly, the derivatization gave a selective fragmentation pattern leading to differentiation of the isomers. </p><p>Another derivatization reagent, 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC), was also tested for the first time in structural investigations. The isomeric glucuronides of morphine, formoterol, and hydroxypropranolol were evaluated. They can all be conjugated in aliphatic as well as aromatic positions. DMISC was proven to be useful in two ways. Firstly, the morphine and formoterol glucuronides that contained a free phenol could be differentiated from those that were conjugated in the aromatic position based on different reactivity. Secondly, for the aromatic <i>O</i>-glucuronide of 4’-hydroxypropranolol, DMISC was proven to react with the amine. This product gave a different fragmentation pattern compared to the corresponding derivative of the aliphatic glucuronide. </p>
27

Caminhos sintéticos para obtenção de ésteres e tioésteres - &#945;-metilsulfonil-&#945;-metiltio-substituídos, precursores dos derivados &#945;-ceto-carbocxílicos correspondentes / Synthetic pathways for obtaining esters and thioesters--methylsulfonyl--methylthio-substituted, precursors of the alpha-keto-carboxylic derivatives corresponding

Donnici, Claudio Luis 02 April 1993 (has links)
Este trabalho apresenta: 1) Duas revisões bibliográficas sendo uma sobre a síntese de &#945;-ceto-tioésteres e -ésteres e a outra sobre a decomposição de sulfóxidos e sulfonas sulfeniladas; 2) Investigações prévias indicando a viabilidade da decomposição térmica e a estabilidade relativa dos derivados bissulfenilados de tioésteres de diferentes estados de oxidação Ia-e, obtidos a partir do &#945;-ceto-tioéster; 3) O estudo de síntese de precursores de &#945;-ceto-tioésteres II e &#945;-ceto-ésteres III, a saber: &#945; - metilsulfonil- &#945; - metiltio tioésteres IVa-c, -éster V e &#945;, &#945; - dimetiltio - ésteres VIa-c; 4) Decomposição térmica de &#945;-metilsulfonil-&#945;-metiltio-tioésteres Iva, b e c e -éster V sintetizados aos &#945;-ceto-tioésteres e ésteres correspondentes, pelo emprego do método elaborado anteriormente por Wladislaw e col. e sugestão do mecanismo da mesma. A síntese de &#945; metilsulfonil &#945; metiltio tiopropionato de etila (Ivb), foi efetuada a partir do ácido &#945;-cloro propiônico através de quatro passos reacionais, a saber: sulfenilação por substituição, oxidação à sulfona , tioesterificação e sulfenilação pelo emprego de NaH/MeS02SMe em DMSO. A obtenção do &#945; - benzil - &#945; - metilsulfonil - &#945; - metiltio - tioacetato de etila (Ivc) foi efetuada a partir de ácido &#945;-cloro acético através de reações de sulfenilação por substituição oxidação à sulfona tioesterificação alquilação com brometo de benzila e NaH em DMSO e, finalmente, a sulfenilação que só foi possível com o emprego de N-metiltioftalimida. A síntese de &#945;-metilsulfonil-&#945;-metiltio-propionato de etila (V) foi efetuada a partir do &#945;-metilsulfonil malonato VIIa pelo eemprego do método de descarbetoxilação sulfenilativa usando 1,4 diazabiciclo [2,2,2] octano (DABCO) em tolueno sob refluxo e MeSO2SMe. Os compostos VIIa,b e c foram preparados a partir dos malonatos de dietila alquil - substituidos, seguido de sulfenilação e oxidação à sulfona. É de interesse a inédita reação de &#945; - metilsulfonil fenilmalonato de dietila (VIIb), com DABCO em benzeno sob refluxo e MeSO2SMe, que conduziu à dessulfonilação sulfenilativa fornecendo o &#945; - metiltio - fenilmalonato de dietila. É apresentada uma discussão mecanística tanto sobre descarbetoxilação, como sobre dessulfonilação sulfenilativas. A síntese de &#945;,&#945;-dimetiltio-ésteres VIa-c foi efetuada pela reação de sulfenilação com descarboxilação dos mono-ácidos malônicos correspondentes. O acompanhamento da descarboxilação e experimentos de deuteração permitiram esclarecer a sequência dos passos reacionais nestas novas reações. Cabe ressaltar que são compostos ainda não descritos na literatura os precursores IVa, IVb, IVc, V e Vib e 11 intermediários envolvidos nas reações efetuadas. Os resultados apresentados neste trabalho, além de importância sintética, trazem uma contribuição para a Química de Compostos Orgânicos de Enxofre. / This work presents: 1) Two literature reviews, one about the synthesis of &#945;-keto thioesters and esters and the other on the decomposition of sulfenylated sulfoxides and sulfones; 2) Previous investigations indicating the viability of thermal decomposition and the relative stability of the dithioderivatives of different oxidation states Ia-e,which were obtained from the &#945;-keto thioester; 3) The study of synthesis of &#945;-keto thioesters II and esters III precursors, which are the following: &#945;-methylsulfonyl-&#945;-methylthio-thioesters IVa-c and -ester V, and &#945;, &#945; - dimethylthio esters VIa-c; 4) Thermal decomposition of the synthesized &#945; - methylsulfonyl- &#945; -methylthio- thioesters Iva,b e c and ester V, to the corresponding &#945;-keto thioesters and &#945;-keto ester, through the method developed by Wladislaw et al., with the suggestion of the mechanism. &#945;-Methylsulfonyl-&#945;-methylthio ethyl thiopropionate (Ivb) was synthesized from &#945;-chloro-propionic acid in four steps: sulfenylative substitution, oxidation to sulfone, thioesterification and sulfenylation using NaH/MeSO2SMe in DMSO. &#945;-Benzyl-&#945;-methylsulfonyl-&#945;-methylthio ethyl thioacetate (,i>Ivc) was obtained from &#945;-chloro acetic acid through the following steps: sulfenylative substitution, oxidation to sulfone, thioesterification, alkylation with benzylbromide and NaH in DMSO, and finally, the sulfenylation which was successful only with the use of N-methylthiophtalimide. &#945;-Methylsulfonyl-&#945;-methylthio ethyl propionate (V) was synthesized through the sulfenylative decarbethoxylation of &#945; methylsulfonyl diethyl malonate VIIa employing DABCO (1,4-diazabicyclo [2.2.2.]octane), in refluxing toluene, and MeSO2Sme. The compounds VIIa,b e c were obtained by the alkylation of malonates, followed by sulfenylation and oxidation to sulfones. An interesting and novel reaction, the sulfenylative desulfonylation, was observed when &#945;-methylsulfonyl phenyldiethyl malonate (VIIb) was treated with DABCO, in refluxing benzene and MeSO2SMe, which led to the &#945;-methylthio diethyl malonate. A mechanistic discussion about the sulfenylative decarbethoxylation and sulfenylative desulfonylation is presented. &#945;, &#945;-dimethylthio esters VIa-c were synthesized by sulfenylation and decarboxylation of the corresponding malonic half-esters. The sequence of the steps of this new reaction could be determined by deuteration experiments and by following the evolution of CO2. The precursors IV, IVb, IVc, V e Vib and 11 intermediates were unknown compounds. This work, besides the synthetical importance, presents some contribution to the Organosulfur Chemistry.
28

Chemical Derivatization in Combination with Liquid Chromatography Tandem Mass Spectrometry for Detection and Structural Investigation of Glucuronides

Lampinen Salomonsson, Matilda January 2008 (has links)
This thesis presents novel approaches for structural investigation of glucuronides using chemical derivatization in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MSn). Today, LC-ESI-MSn is the dominant technique for quantitative as well as qualitative analyses of metabolites, due to its high sensitivity and selectivity. However, for compounds without an easily ionizable group, e.g., steroids, the sensitivity is limited. In the work presented in this thesis, a derivatization procedure forming a basic oxime significantly increased the detection sensitivity for the altrenogest glucuronide. Furthermore, in structural evaluations of glucuronides, the limitation of LC-MSn becomes evident due to the initial neutral loss of 176 u, i.e. monodehydrated glucuronic acid, which often makes it impossible to elucidate the structures of the conjugates. To solve this problem, the main part of the work described in this thesis was devoted to chemical derivatization as a means of facilitating the determination of the site of conjugation. For the first time, the isomeric estriol glucuronides were evaluated using a combination of three reagents 2-chloro-1-methylpyridinium iodide (CMPI), 1-ethyl-3-(3-dimethyl- aminopropyl)-carbodiimide (EDC), and 2-picolylamine (PA). Interestingly, the derivatization gave a selective fragmentation pattern leading to differentiation of the isomers. Another derivatization reagent, 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC), was also tested for the first time in structural investigations. The isomeric glucuronides of morphine, formoterol, and hydroxypropranolol were evaluated. They can all be conjugated in aliphatic as well as aromatic positions. DMISC was proven to be useful in two ways. Firstly, the morphine and formoterol glucuronides that contained a free phenol could be differentiated from those that were conjugated in the aromatic position based on different reactivity. Secondly, for the aromatic O-glucuronide of 4’-hydroxypropranolol, DMISC was proven to react with the amine. This product gave a different fragmentation pattern compared to the corresponding derivative of the aliphatic glucuronide.
29

Caminhos sintéticos para obtenção de ésteres e tioésteres - &#945;-metilsulfonil-&#945;-metiltio-substituídos, precursores dos derivados &#945;-ceto-carbocxílicos correspondentes / Synthetic pathways for obtaining esters and thioesters--methylsulfonyl--methylthio-substituted, precursors of the alpha-keto-carboxylic derivatives corresponding

Claudio Luis Donnici 02 April 1993 (has links)
Este trabalho apresenta: 1) Duas revisões bibliográficas sendo uma sobre a síntese de &#945;-ceto-tioésteres e -ésteres e a outra sobre a decomposição de sulfóxidos e sulfonas sulfeniladas; 2) Investigações prévias indicando a viabilidade da decomposição térmica e a estabilidade relativa dos derivados bissulfenilados de tioésteres de diferentes estados de oxidação Ia-e, obtidos a partir do &#945;-ceto-tioéster; 3) O estudo de síntese de precursores de &#945;-ceto-tioésteres II e &#945;-ceto-ésteres III, a saber: &#945; - metilsulfonil- &#945; - metiltio tioésteres IVa-c, -éster V e &#945;, &#945; - dimetiltio - ésteres VIa-c; 4) Decomposição térmica de &#945;-metilsulfonil-&#945;-metiltio-tioésteres Iva, b e c e -éster V sintetizados aos &#945;-ceto-tioésteres e ésteres correspondentes, pelo emprego do método elaborado anteriormente por Wladislaw e col. e sugestão do mecanismo da mesma. A síntese de &#945; metilsulfonil &#945; metiltio tiopropionato de etila (Ivb), foi efetuada a partir do ácido &#945;-cloro propiônico através de quatro passos reacionais, a saber: sulfenilação por substituição, oxidação à sulfona , tioesterificação e sulfenilação pelo emprego de NaH/MeS02SMe em DMSO. A obtenção do &#945; - benzil - &#945; - metilsulfonil - &#945; - metiltio - tioacetato de etila (Ivc) foi efetuada a partir de ácido &#945;-cloro acético através de reações de sulfenilação por substituição oxidação à sulfona tioesterificação alquilação com brometo de benzila e NaH em DMSO e, finalmente, a sulfenilação que só foi possível com o emprego de N-metiltioftalimida. A síntese de &#945;-metilsulfonil-&#945;-metiltio-propionato de etila (V) foi efetuada a partir do &#945;-metilsulfonil malonato VIIa pelo eemprego do método de descarbetoxilação sulfenilativa usando 1,4 diazabiciclo [2,2,2] octano (DABCO) em tolueno sob refluxo e MeSO2SMe. Os compostos VIIa,b e c foram preparados a partir dos malonatos de dietila alquil - substituidos, seguido de sulfenilação e oxidação à sulfona. É de interesse a inédita reação de &#945; - metilsulfonil fenilmalonato de dietila (VIIb), com DABCO em benzeno sob refluxo e MeSO2SMe, que conduziu à dessulfonilação sulfenilativa fornecendo o &#945; - metiltio - fenilmalonato de dietila. É apresentada uma discussão mecanística tanto sobre descarbetoxilação, como sobre dessulfonilação sulfenilativas. A síntese de &#945;,&#945;-dimetiltio-ésteres VIa-c foi efetuada pela reação de sulfenilação com descarboxilação dos mono-ácidos malônicos correspondentes. O acompanhamento da descarboxilação e experimentos de deuteração permitiram esclarecer a sequência dos passos reacionais nestas novas reações. Cabe ressaltar que são compostos ainda não descritos na literatura os precursores IVa, IVb, IVc, V e Vib e 11 intermediários envolvidos nas reações efetuadas. Os resultados apresentados neste trabalho, além de importância sintética, trazem uma contribuição para a Química de Compostos Orgânicos de Enxofre. / This work presents: 1) Two literature reviews, one about the synthesis of &#945;-keto thioesters and esters and the other on the decomposition of sulfenylated sulfoxides and sulfones; 2) Previous investigations indicating the viability of thermal decomposition and the relative stability of the dithioderivatives of different oxidation states Ia-e,which were obtained from the &#945;-keto thioester; 3) The study of synthesis of &#945;-keto thioesters II and esters III precursors, which are the following: &#945;-methylsulfonyl-&#945;-methylthio-thioesters IVa-c and -ester V, and &#945;, &#945; - dimethylthio esters VIa-c; 4) Thermal decomposition of the synthesized &#945; - methylsulfonyl- &#945; -methylthio- thioesters Iva,b e c and ester V, to the corresponding &#945;-keto thioesters and &#945;-keto ester, through the method developed by Wladislaw et al., with the suggestion of the mechanism. &#945;-Methylsulfonyl-&#945;-methylthio ethyl thiopropionate (Ivb) was synthesized from &#945;-chloro-propionic acid in four steps: sulfenylative substitution, oxidation to sulfone, thioesterification and sulfenylation using NaH/MeSO2SMe in DMSO. &#945;-Benzyl-&#945;-methylsulfonyl-&#945;-methylthio ethyl thioacetate (,i>Ivc) was obtained from &#945;-chloro acetic acid through the following steps: sulfenylative substitution, oxidation to sulfone, thioesterification, alkylation with benzylbromide and NaH in DMSO, and finally, the sulfenylation which was successful only with the use of N-methylthiophtalimide. &#945;-Methylsulfonyl-&#945;-methylthio ethyl propionate (V) was synthesized through the sulfenylative decarbethoxylation of &#945; methylsulfonyl diethyl malonate VIIa employing DABCO (1,4-diazabicyclo [2.2.2.]octane), in refluxing toluene, and MeSO2Sme. The compounds VIIa,b e c were obtained by the alkylation of malonates, followed by sulfenylation and oxidation to sulfones. An interesting and novel reaction, the sulfenylative desulfonylation, was observed when &#945;-methylsulfonyl phenyldiethyl malonate (VIIb) was treated with DABCO, in refluxing benzene and MeSO2SMe, which led to the &#945;-methylthio diethyl malonate. A mechanistic discussion about the sulfenylative decarbethoxylation and sulfenylative desulfonylation is presented. &#945;, &#945;-dimethylthio esters VIa-c were synthesized by sulfenylation and decarboxylation of the corresponding malonic half-esters. The sequence of the steps of this new reaction could be determined by deuteration experiments and by following the evolution of CO2. The precursors IV, IVb, IVc, V e Vib and 11 intermediates were unknown compounds. This work, besides the synthetical importance, presents some contribution to the Organosulfur Chemistry.
30

New radical additions of alkylsulfonyl cyanides onto unactivated olefins : enantioselective approaches towards the total synthesis of leucophyllidine / Nouvelles additions radicalaires de cyanures d’alkylsulfonyle sur des oléfines non-activées : approches énantiosélectives à la synthèse totale de la leucophyllidine

Pirenne, Vincent 20 December 2018 (has links)
Dans le cadre de la synthèse totale de la leucophyllidine, un alcaloïde bis-indolique, des réactions de carbo- et sulfonyl-cyanation radicalaires sans étain ont été développées. Les cyanures de sulfonyle RSO2CN, préparés à partir des thiocyanates correspondant par une nouvelle méthode d’oxydation, sont utilisés comme pièges radicalaires. Ces réactifs fragmentent en présence d’initiateur thermique (carbo-cyanation) ou par le biais de la catalyse photoredox (sulfonyl-cyanation). Dans ce dernier cas, une étude mécanistique approfondie sur le cycle photo-catalytique a été accomplie. Ces méthodologies introduisent un nitrile sur une chaîne carbonée insaturée par voie radicalaire, fournissant des intermédiaires avancés pour la synthèse totale d’alcaloïdes. Pour la synthèse asymétrique de l’eucophylline, le fragment sud de la leucophyllidine, la sulfonyl-cyanation de cyclobutènes énantioenrichis a montré d’excellentes diastéréosélectivités. Différentes stratégies d’ouverture de cycle ont ensuite été examinées. / During our efforts directed toward the total synthesis of leucophyllidine, a bis-indole alkaloid, the tin-free radical carbo-cyanation and sulfonyl-cyanation of olefins were developed. The sulfonyl cyanides, acting as radical traps, were synthesized through a new oxidation of the corresponding thiocyanate. These reagents were found to fragment under thermal initiation (carbo-cyanation) or using the photoredox catalysis (sulfonyl-cyanation). A thorough mechanistic study was accomplished for the sulfonyl-cyanation. These methodologies install a nitrile onto an olefin backbone, furnishing advanced intermediates for the total synthesis of alkaloids. For the asymmetric synthesis of eucophylline, the south fragment of leucophyllidine, the sulfonyl-cyanation of optically pure cyclobutenes showed excellent diastereoselectivities. Different ring-opening reactions of the corresponding cyclobutane were then examined.

Page generated in 0.0332 seconds