51 |
Urban ecosystems and human health in South Africa : examining the relationships between housing, energy, indoor air quality and respiratory healthSavage, Leah Krystyn 03 October 2007 (has links)
In South Africa one of the strongest influences on domestic indoor air quality is the type of energy used for heating, cooking and other household purposes. Emissions from fuel combustion, along with housing factors, can result in respiratory infections, a leading cause of death in the country. In this study I examine the relationships between energy types, patterns of use, housing conditions such as improper ventilation and overcrowding, indoor air quality and respiratory health in poorer communities of Msunduzi Municipality, South Africa. These variables were examined using an ecohealth perspective through the integration of data concerning individual time-activity budgets, housing materials and structure, energy sources used for heating, cooking and lighting, respiratory symptoms and continuous real time monitoring of indoor air pollutants (particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO) and sulphur dioxide (SO2)). A total of 20 dwellings, displaying large variability in housing structure and energy patterns, were sampled for 24 hours (hr) over a period of 60 days. The mean 24-hr average indoor concentrations measured were as follows: PM2.5= 16 ± 11 µg/m3, PM10= 78 ± 46 µg/m3, CO= 5 ± 6 ppm and SO2= 0.18 ± 0.27 ppm. Mean indoor concentrations measured were significantly greater than mean outdoor concentrations (p<0.0001 (PM2.5), p=0.017 (PM10), p<0.0001 (CO), p<0.0001 (SO2)). Although PM concentrations increased with the use of increasingly inefficient-burning fuel types (gas < paraffin < wood), no significant differences in the means were found across these fuel types. It is thought that the high degree of variability among dwellings and the small sample size in this study obscured any statistically significant relationships. No significant differences in mean concentrations were found across different housing types either. Indoor exposures were, on average, highest among very young children (ages 0-5) and elders (ages 51+). All age groups reported experiencing high levels of respiratory symptoms, with the elder group (ages 51+) reporting the highest percentages for each symptom. This study will be used to inform local governments and NGOs of local indoor air pollution and exposure risks, so that policy and resources can be allocated accordingly to improve physical environments. / Thesis (Master, Environmental Studies) -- Queen's University, 2007-09-27 08:52:05.443
|
52 |
Electrochemical removal of SOx from flue gasSchmidt, Douglas Stephen 05 1900 (has links)
No description available.
|
53 |
A Flue Gas Desulphurisation System Utilising Alumina Causticiser ResidueLeon Munro Unknown Date (has links)
The ever increasing global demand for materials has placed aluminium as the world’s second most used metal, with world annual production currently >24 million tons. Consequently, the global alumina industry is perpetually striving to meet demands in conjunction with research, development and implementation of more efficient and sustainable processes and practises. Of specific concern for many proponents within the industry is that increased alumina production inadvertently results in increased Bayer Process-derived alkaline solid and liquid waste loads. Furthermore, in-house power generation at all Australian alumina refineries contributes to acid gas emissions, particularly SOx and NOx, both of which have environmental and anthropogenic impacts of global concern. The focus of this work is SO2 emission. SOx emission control measures can be achieved before, during or after combustion; the latter is termed flue gas desulphurisation (FGD). Commercially available FGD systems are dominated by once-through wet processes whereby the flue gas passes up through an absorbtion tower. The most favourable medium for industrial use is seawater, followed by limestone, and in some cases, a combination of both. However, the ever-increasing stringency of environmental emission legislation continues to inflict tighter controls on power production and is forcing industry to investigate alternative cost-effective FGD mediums. Therefore much research is currently dedicated to the utilisation of high volume, alkaline waste streams over manufactured sorbents. Modern environmental engineering approaches to waste product minimisation, neutralisation and/or reuse have lead to many new processes which change the view of many materials from waste product to environmental resource. Subsequently, this work examines the application of an isolated Bayer Process waste product, tricalcium aluminate hexahydrate (TCA6), as a FGD medium. Initial research assessed the dissolution behaviour and performance of the proposed medium with sulphuric acid, followed by batch reactor trials with a simulated flue gas. Data derived from this research indicated the suitability of TCA6 as a FGD medium and was subsequently applied to a preliminary model and proposed design parameters required for further pilot scale investigations. This work provides strong support for an economically viable and more sustainable approach to FGD for the alumina industry.
|
54 |
A Flue Gas Desulphurisation System Utilising Alumina Causticiser ResidueLeon Munro Unknown Date (has links)
The ever increasing global demand for materials has placed aluminium as the world’s second most used metal, with world annual production currently >24 million tons. Consequently, the global alumina industry is perpetually striving to meet demands in conjunction with research, development and implementation of more efficient and sustainable processes and practises. Of specific concern for many proponents within the industry is that increased alumina production inadvertently results in increased Bayer Process-derived alkaline solid and liquid waste loads. Furthermore, in-house power generation at all Australian alumina refineries contributes to acid gas emissions, particularly SOx and NOx, both of which have environmental and anthropogenic impacts of global concern. The focus of this work is SO2 emission. SOx emission control measures can be achieved before, during or after combustion; the latter is termed flue gas desulphurisation (FGD). Commercially available FGD systems are dominated by once-through wet processes whereby the flue gas passes up through an absorbtion tower. The most favourable medium for industrial use is seawater, followed by limestone, and in some cases, a combination of both. However, the ever-increasing stringency of environmental emission legislation continues to inflict tighter controls on power production and is forcing industry to investigate alternative cost-effective FGD mediums. Therefore much research is currently dedicated to the utilisation of high volume, alkaline waste streams over manufactured sorbents. Modern environmental engineering approaches to waste product minimisation, neutralisation and/or reuse have lead to many new processes which change the view of many materials from waste product to environmental resource. Subsequently, this work examines the application of an isolated Bayer Process waste product, tricalcium aluminate hexahydrate (TCA6), as a FGD medium. Initial research assessed the dissolution behaviour and performance of the proposed medium with sulphuric acid, followed by batch reactor trials with a simulated flue gas. Data derived from this research indicated the suitability of TCA6 as a FGD medium and was subsequently applied to a preliminary model and proposed design parameters required for further pilot scale investigations. This work provides strong support for an economically viable and more sustainable approach to FGD for the alumina industry.
|
55 |
A Flue Gas Desulphurisation System Utilising Alumina Causticiser ResidueLeon Munro Unknown Date (has links)
The ever increasing global demand for materials has placed aluminium as the world’s second most used metal, with world annual production currently >24 million tons. Consequently, the global alumina industry is perpetually striving to meet demands in conjunction with research, development and implementation of more efficient and sustainable processes and practises. Of specific concern for many proponents within the industry is that increased alumina production inadvertently results in increased Bayer Process-derived alkaline solid and liquid waste loads. Furthermore, in-house power generation at all Australian alumina refineries contributes to acid gas emissions, particularly SOx and NOx, both of which have environmental and anthropogenic impacts of global concern. The focus of this work is SO2 emission. SOx emission control measures can be achieved before, during or after combustion; the latter is termed flue gas desulphurisation (FGD). Commercially available FGD systems are dominated by once-through wet processes whereby the flue gas passes up through an absorbtion tower. The most favourable medium for industrial use is seawater, followed by limestone, and in some cases, a combination of both. However, the ever-increasing stringency of environmental emission legislation continues to inflict tighter controls on power production and is forcing industry to investigate alternative cost-effective FGD mediums. Therefore much research is currently dedicated to the utilisation of high volume, alkaline waste streams over manufactured sorbents. Modern environmental engineering approaches to waste product minimisation, neutralisation and/or reuse have lead to many new processes which change the view of many materials from waste product to environmental resource. Subsequently, this work examines the application of an isolated Bayer Process waste product, tricalcium aluminate hexahydrate (TCA6), as a FGD medium. Initial research assessed the dissolution behaviour and performance of the proposed medium with sulphuric acid, followed by batch reactor trials with a simulated flue gas. Data derived from this research indicated the suitability of TCA6 as a FGD medium and was subsequently applied to a preliminary model and proposed design parameters required for further pilot scale investigations. This work provides strong support for an economically viable and more sustainable approach to FGD for the alumina industry.
|
56 |
Optimization Of The Oxidation Of Sulphur Dioxide In An Existing Multi-Bed Adiabatic ReactorChartrand, Gilles 04 1900 (has links)
<p> The sulphur dioxide converter of the contact sulphuric acid plant ~f the Hamilton Works of Canadian Industries Ltd., is optimized using the so2 conversion as the objective function to be maximized. The simulation model used is fitted to the plant data. The number of beds, the inlet temperatures, the catalyst bed depths and the air addition are the variables considered in this work. The effect due to the imposition of a constraint on the system is also examined. </p>
<p> Four integration techniques are studied to solve the set of nonlinear ordinary differential equations that simulates the transformation in a bed. The Runge-Kutta third-order is found to be the most efficient. </p>
<p> Four optimization techniques, namely, dynamic programming, gradient search, direct search of Hooke and Jeeves and discrete maximum principle, are used. Their applicability and efficiency are compared. </p>
<p> A very flat response (conversion) surface is found in the neighbourhood of the optimum. </p>
<p> The optimal operating conditions are compared with the simulation of the C.I.L. operation. The reachability of these optimal conditions in the plant is also considered. </p> / Thesis / Master of Engineering (ME)
|
57 |
An evaluation of sulphur dioxide fume levels and the prevalence of darkroom disease symptoms amongst radiology workers in NamibiaDamases, Christine January 2006 (has links)
A thesis in fulfilment of the requirements for the Master of Technology: Radiography, Durban University of Technology, 2006. / The study will determine the sulphur dioxide (SO2) levels in the x-ray department and evaluate it’s effects on the health of the radiology workers. The aim of the study is to mainly create awareness of occupational hazards posed by processing chemistry to radiology workers. / M
|
58 |
Efeito da concentração de SO2 nas reações de calcinação e sulfatação de calcários em reator de leito fluidizado / Effect of the concentration of S02 in the reactions of calcination and sulfatation in a fluidized bed reactorLindo Samaniego, Julio Edgardo 21 November 2003 (has links)
Foi realizado um estudo sobre o efeito das concentrações de SO2 na sua absorção por calcários em fornalhas de leito fluidizado. Para observar a influência do SO2 sobre os diferentes parâmetros físicos e químicos do processo, foram criadas atmosferas compostas por quatro concentrações diferentes de SO2, que foram de 500, 1.000, 2.000 e 4.000 ppm. Utilizou-se ainda dois tipos de calcários, o Dolomítico-DP e o Calcítico-CI. O leito fluidizado borbulhante utilizado, possuía 160 mm de diâmetro interno e foi fluidizado com ar à temperatura de 850ºC, contendo SO2 na concentração desejada. Como material do leito foi utilizada areia de quartzo (99,9%), com diâmetro de 385 μm e aproximadamente 3,0 Kg de massa. O calcário foi adicionado em bateladas de 50 g com o reator já pré-aquecido, enquanto as variações das concentrações dos gases SO2, CO2, CO e O2 e suas descargas foram monitoradas continuamente na saída do ciclone que era utilizado para retenção do particulado fino. Para adquirir esses dados foi desenvolvido um programa em LabView. O modelo matemático escolhido possibilitou a determinação da conversão, da taxa de conversão e do coeficiente global de taxa de reação para todas as condições testadas. / A study of the effect of the concentrations of SO2 in its absorption by limestones in fluidized bed furnaces was conducted. For the determination of the SO2 influence on the different physical and chemical parameters of process, such as calcinations and sulfatation four different atmospheres were used in the reator with concentrations of SO2 of 500, 1.000, 2.000 and 4.000 ppm. Two types of limestones were used : Dolomitico-DP and Calcitico-CI. The bench scale bubbling fluidized bed reactor had a 160 mm internal diameter and was fluidized with air at 850ºC containing the required concentration of SO2. Bed material was quartz sand (99,9%), with 385 μm diameter and approximately 3 Kg of mass. The limestone was introduced in samples of 50 g, in the reactor previously stabilized, and the concentration of the gases SO2, CO2, CO and O2 and their discharges in the reactor exit were continually monitored. For the recording of this parameters a data acquisition program in LabView was developed. A mathematical model was used to allow the determination of the conversion, the conversion rate and the global coefficient of reaction rate for all the tested conditions.
|
59 |
The effect of shading and crop load on flavour and aroma compounds in Sauvignon blanc grapes and wineFord, Rebecca Jane January 2007 (has links)
The effects of crop load and berry exposure on the composition of Marlborough Sauvignon blanc grapes and wine from the Brancott vineyard, Blenheim, were explored.
Commercially grown, 2-cane and 4-cane Sauvignon blanc vines were used with a row orientation of north-south. Two exposure treatments were imposed in the following manner: complete leaf removal was undertaken in the fruit zone and 50% shade cloth was erected to give a uniform shading treatment to half the trial vines. Weekly thirty-berry and whole bunch samples were taken from each of the 32 plots with the exception of the veraison period when two samples per week were taken. Vine vigour was assessed using pruning and leaf area per vine data. Harvest occurred on different dates for 2-cane and 4-cane pruned vines so that fruit attained from both treatments had similar °Brix. Fruit was processed at the Lincoln University winery. Must analysis and wine analysis were
undertaken. As expected, 4-cane vines had almost double the yield of 2-cane vines. Higher crop load
significantly reduced leaf area per shoot and shoot thickness. Lower leaf area to fruit ratio
for 4-cane berries resulted in delayed onset of veraison and slowed the rate of sugar accumulation. Crop load, which limited leaf area to fruit ratio, appeared to be the dominant
factor in determining timing of grape physiological ripeness as expressed by °Brix over
other factors such as fruit exposure. Malic acid, tartaric acid, IPMP (iso-propylmethoxypyrazine)
and IBMP (iso-butyl-methoxypyrazine) were lower at equivalent °Brix in 4-cane compared with 2-cane berries. Significantly higher concentrations of quercetin were found in exposed compared to shaded berries. Must analysis showed a significant influence of crop load on berry titratable acidity and pH, reflecting berry ripening results. Exposure significantly increased the concentrations of nitrogenous compounds in 4-cane must yet showed no influence on 2-cane must.
After wine processing lower malic acid concentrations in wines made from 100% exposed
fruit became evident in lower wine titratable acidity but showed no influence on wine pH.
Bentonite addition to wines had a small but statistically significant influence on wine by
reducing pH, titratable acidity and alcohol. Bound sulphur concentrations were significantly
higher in 4-cane versus 2-cane wines. At harvest, methoxypyrazine levels in grapes and wines were very low; IBMP concentrations where significantly lower than those normally found in Sauvignon blanc wines from Marlborough. This was attributed to the absence of basal leaves from the shoots of ripening berries.
The results suggest that leaf area to fruit ratio is a powerful determinant of grape and wine
quality.
|
60 |
Volatile sulfur compounds in coastal acid sulfate soils, northern N.S.W.Kinsela, Andrew Stephen, School of Biological, Earth & Environmental Sciences, UNSW January 2007 (has links)
The cycling of biogenic volatile sulfur compounds (VSCs) within marine and terrestrial ecosystems has been shown to play an integral role in atmospheric chemistry; by influencing global climate change through the creation of cloud condensation nuclei and controlling acid-base chemistry; as well as influencing sediment chemistry including the interactions with trace metals, particularly regarding iron sulfide formation. Despite this, the examination of VSCs within Australian coastal acid sulfate soils (ASS) is an unexplored area of research. As ASS in Australia occupy an area in excess of 9 M ha, there is a clear need for a greater understanding of the cycling of these compounds within such systems. This thesis looks at the concentrations of several VSCs within agricultural and undisturbed ASS on the east coast of Australia. Initial measurements of sulfur dioxide (SO2) were made using passive diffusion samplers, which were followed by two detailed field-based studies looking at the concentrations and fluxes of both SO2 and hydrogen sulfide (H2S) using flux-gradient micrometeorological techniques. These novel results indicated that this agricultural ASS was a substantial source of atmospheric H2S (0.036-0.056 gSm-2yr-1), and SO2 (0.095-0.31 gSm-2yr-1), with flux values equating to many other salt- and freshwater marshes and swamps. The flux data also suggested that the ASS could be a continual source of H2S which is photo-oxidised during the daytime to SO2. Measurements of both compounds showed separate, inverse correlations to temperature and moisture meteorological parameters indicating possible contributing and / or causal release factors. Further identification of these and other VSCs within ASS samplers was undertaken in the laboratory using gas chromatography in combination with solid-phase microextraction. Although SO2 and H2S were not discovered within the headspace samples, two other VSCs important in atmospheric sulfur cycling and trace metal geochemistry were quantified; dimethylsulfide (DMS; > 300??g/L) and ethanethiol (ESH > 4??g/L). The measurements of H2S, DMS and ESH are the first quantifications with Australian ASS, and they may be important for refining regional or local atmospheric sulfur budgets, as well as interpreting previous SO2 emissions from ASS. Ultimately this thesis further enhances our understanding of the cycling of VSCs within acid sulfate systems.
|
Page generated in 0.0412 seconds