• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 17
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 88
  • 88
  • 15
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The effect of shading and crop load on flavour and aroma compounds in Sauvignon blanc grapes and wine

Ford, R. J. January 2007 (has links)
The effects of crop load and berry exposure on the composition of Marlborough Sauvignon blanc grapes and wine from the Brancott vineyard, Blenheim, were explored. Commercially grown, 2-cane and 4-cane Sauvignon blanc vines were used with a row orientation of north-south. Two exposure treatments were imposed in the following manner: complete leaf removal was undertaken in the fruit zone and 50% shade cloth was erected to give a uniform shading treatment to half the trial vines. Weekly thirty-berry and whole bunch samples were taken from each of the 32 plots with the exception of the veraison period when two samples per week were taken. Vine vigour was assessed using pruning and leaf area per vine data. Harvest occurred on different dates for 2-cane and 4-cane pruned vines so that fruit attained from both treatments had similar °Brix. Fruit was processed at the Lincoln University winery. Must analysis and wine analysis were undertaken. As expected, 4-cane vines had almost double the yield of 2-cane vines. Higher crop load significantly reduced leaf area per shoot and shoot thickness. Lower leaf area to fruit ratio for 4-cane berries resulted in delayed onset of veraison and slowed the rate of sugar accumulation. Crop load, which limited leaf area to fruit ratio, appeared to be the dominant factor in determining timing of grape physiological ripeness as expressed by °Brix over other factors such as fruit exposure. Malic acid, tartaric acid, IPMP (iso-propylmethoxypyrazine) and IBMP (iso-butyl-methoxypyrazine) were lower at equivalent °Brix in 4-cane compared with 2-cane berries. Significantly higher concentrations of quercetin were found in exposed compared to shaded berries. Must analysis showed a significant influence of crop load on berry titratable acidity and pH, reflecting berry ripening results. Exposure significantly increased the concentrations of nitrogenous compounds in 4-cane must yet showed no influence on 2-cane must. After wine processing lower malic acid concentrations in wines made from 100% exposed fruit became evident in lower wine titratable acidity but showed no influence on wine pH. Bentonite addition to wines had a small but statistically significant influence on wine by reducing pH, titratable acidity and alcohol. Bound sulphur concentrations were significantly higher in 4-cane versus 2-cane wines. At harvest, methoxypyrazine levels in grapes and wines were very low; IBMP concentrations where significantly lower than those normally found in Sauvignon blanc wines from Marlborough. This was attributed to the absence of basal leaves from the shoots of ripening berries. The results suggest that leaf area to fruit ratio is a powerful determinant of grape and wine quality.
82

The Kilauea Volcano adult health study, Hawai'i, U.S.A.

Longo, Bernadette Mae 12 January 2005 (has links)
Graduation date: 2005
83

Des enjeux juridiques concernant l'efficacité des systèmes d'échange de droits d'émission

Brophy, Alain 04 1900 (has links)
Ce mémoire décrit et analyse différents types de systèmes d'échange de droits d'émission utilisés dans le cadre de politiques de gestion de la pollution atmosphérique. L'objectif premier est de répertorier des enjeux juridiques étant liés à l'efficacité de ces systèmes. Dans un premier temps, nous nous attardons à la structure et aux mécanismes internes des systèmes d'échange de droits d'émission. Tout d'abord, nous soulignons le fondement théorique de ce type de système. Nous évaluons par la suite la structure et certains litiges liés au système d'échange américain dans le cadre des émissions de dioxyde de soufre. Dans un deuxième temps, nous continuons la description de systèmes en nous attardant plus spécifiquement aux interactions entre les systèmes d'échange de droits d'émission et les autres politiques et règlementations environnementales (incluant d'autres systèmes d'échange d'émission) visant la même problématique environnementale. / The present essay describes and analyses different types of emissions trading schemes as an instrument in air quality and environmental policy. The objective is to index legal stakes or risks relating to the efficiency of emissions trading schemes. ln the first part, we evaluate the structure and the design of emissions trading schemes. The knowledge of the economic theory transcending those schemes is necessary to understand ail the structural mechanisms. After this evaluation, this essay proposes an analysis of the U.S. sulphur dioxide program based on the U.S. Clean Air Act and sorne of the litigations that occurred in the application of the said program. ln part two, we are describing the structure and the design of emissions trading schemes with the specific goal of underlining the interactions between different types of environmental policies or regulations and emissions trading schemes when they are ail used for the same environmental problem. / "Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de Maîtrise en droit (LL.M.) option recherche". Ce mémoire a été accepté à l'unanimité et classé parmi les 15% des mémoires de la discipline. Commentaires du jury ; "Le jury souligne la difficulté du sujet et l'importance des enjeux économiques, politiques et juridiques. Le candidat a bien déblayé le sujet et a su structurer son analyse de manière intéressante".
84

Komparace emisního obchodovacího systému EU a programu kyselého deště v USA / The comparison of the European Union Emission Trading Scheme and the Acid Rain Program in USA

Zelená, Vladimíra January 2009 (has links)
The thesis focuses on comparison of emission trading of the European Union (European Union Emission Trading Scheme) which trades with carbon dioxide allowances and emission trading of the United States of America (Acid Rain Program) which trade with sulphur dioxide allowances. Despite of using same mechanisms and principles, these systems brought diverse results -- mostly because of different implementation of key parameters. The thesis which concerns with both of these systems is trying to find the major reasons of unsuccessful implementation of the European Union trading and the most important reasons leading to successful performance of the U.S. program.
85

Absorpční čištění spalin vznikajících spalováním odpadů / Absorption Cleaning of Flue Gases Arising from the Incineration of Wastes

Jecha, David January 2010 (has links)
This doctoral thesis deals with potentials of methods for cleaning of flue gas from pollutants such as acidic components. Wet method of flue gas cleaning is analysed in detail with special focus on elimination of sulphur dioxide (SO2). Introduction presents advantages and disadvantages of thermal processing of waste and production of undesired pollutants. Following parts comprise facts about main pollutants produced from incineration. Legislation providing for emission of gaseous pollutants from incinerators is also given. Chapter concerning methods of pollutants elimination is mostly focused on absorption (wet and/or semidry scrubber) and adsorption methods. Several up-to-date technological procedures are mentioned; they have a multifunctional effect such as elimination of acidic components, heavy metals, polychlorinated dibenzo-p-dioxines and dibenzo-furanes from flue gas using single injection of suspense. Elimination of mercury (Hg) is among the technologies for heavy metal elimination which is described in detail. Main part of the thesis is related to experiments at two-stage flue gas cleaning equipment. Function of this experimental unit is described along with methods for measurement of individual quantities and detailed description of all the equipment and its components. Experimental measurements carried out at this equipment are explicated and assessed. Along with experimental work, the author has created a simulation model of wet flue gas cleaning in ChemCad programme. Particular operational parameters were tested on this model. This thesis contains results of the measurement which provide background for verification of the mathematical model. Further, the balance of heavy metals conducted on the basis of measurements in waste incinerator is displayed. Main contribution of the thesis may be summed up as follows: ­ Author has designed and constructed experimental equipment for two stage flue gas cleaning. ­ He also formed calculation for pressure drop of O-element prototype equipment and for packing column with FLEXIPAC structured packing. ­ He created data file with measurements at the experimental unit. ­ He determined temperature at outlet of a random device where liquid is injected into stream of hot flue gas. ­ He designed a simulation model which is identical with experimental equipment and which usage enabled comparison of measured and calculated data; it also serves as a basis for industrial applications. ­ Last part deals with creation off heavy metals balance in a case industrial waste incinerator.
86

Koroze oceli a hliníku ve vybraných prostředích / Corrosion of Steel and Aluminium in Chosen Enviroments

Stavinoha, Jakub Unknown Date (has links)
This Master’s thesis is related to corrosion degradation processes on metal surfaces exposed in different environments. The theoretical part is concern with basic principles in electrochemical and atmospheric corrosion. Practical part describes experimentation of corrosion process of aluminium (99,5) and low carbon steel (11321) in two different atmospheric environments. The conclusion of thesis includes evaluations of the results from practical part and comparison with the theoretical part.
87

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
88

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0407 seconds