• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 11
  • 10
  • 9
  • 2
  • 1
  • Tagged with
  • 89
  • 89
  • 71
  • 51
  • 35
  • 22
  • 22
  • 20
  • 19
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Molecular Adhesion and Friction at Elastomer/Polymer Interfaces

Buehler, Betul January 2006 (has links)
No description available.
72

Study of Confinement and Sliding Friction of Fluids Using Sum Frequency Generation Spectroscopy

Nanjundiah, Kumar January 2007 (has links)
No description available.
73

Spectroscopic Study of Compressible Mobile Phase and Stationary Phase Behavior in Chromatography

Baker, Lawrence R. 30 July 2008 (has links) (PDF)
Raman spectroscopy, laser-induced fluorescence, and sum-frequency generation (SFG) spectroscopy are used to investigate the behavior of compressible mobile phases and stationary phases under a variety of chromatographic conditions. Efforts to understand and optimize separations employing compressible mobile phases have been limited by a lack of understanding of the mobile phase density gradient. Mobile phase compressibility leads to gradients in linear velocity and solute retention and affects separation speed and efficiency, especially in packed columns. This work describes on-column density measurement of CO2, a common carrier fluid for SFC and SGC, in packed capillary columns using Raman microspectroscopy. On-column detection by laser-induced fluorescence is used to observe the effect of the mobile phase density gradient on separation speed and efficiency, and experimental efficiency is compared to a theoretical model. Additionally, SFG spectroscopy allows for probing the structure of model monomeric and polymeric C18 stationary phases under pressure; this provides a basis for correlating selectivity with pressure-induced structural changes in stationary phase materials. Together, this work provides a more complete understanding of the role of column pressure and fluid compressibility on the speed, efficiency, and selectivity of chemical separations.
74

Development of ultra-broadband ultrafast infrared sources and applications to nonlinear vibrational spectroscopy of interfaces

Isaienko, Oleksandr January 2011 (has links)
Interfaces play a crucial role in the exchange of energy and matter in various physical, chemical and biological systems. A particular interest has been to study interfaces between aqueous phases and various minerals because of their importance in understanding geochemical phenomena as well as for applications such as enhanced oil recovery. The nonlinear optical technique of vibrational sum-frequency generation (SFG) spectroscopy, introduced over 20 years ago, has become a powerful tool to investigate various surfaces, in particular, mineral-water interfaces. One of the challenges of the SFG spectroscopy of aqueous surfaces is the need to tune the central frequency of relatively narrowband IR lasers through the broad range of the OH-stretch frequencies of water molecules (3000 - 4000 cm-1). We have developed a novel ultrabroadband IR laser source that generates infrared pulses in the ~2800-6000 cm-1 range (lambda~3300-1800 nm) with bandwidths Delta(nu)>1000 cm-1, and bandwidths >2000 cm-1 in the near-IR range (lambda~1000-2000 nm). Pulse front tilt of signal pulse has been corrected allowing for compression of signal pulses down to 25 fsec. Such ultrabroadband IR pulses allow us to perform SFG spectroscopy of aqueous surfaces over the entire frequency range of water molecule spectrum (extending from ~2900 cm -1 to ~3800 cm -1) simultaneously, without tuning the laser ("in one shot"). We have used this novel ultrabroadband IR source to investigate the vibrational SFG spectra of silica/water interfaces. The high signal-to-noise ratio of our spectroscopic setup has allowed us to study low-intensity features that were not studied in detail, or recognized previously in the SFG-spectroscopy investigations, including: 1) non-hydrogen bonded OH vibrations at hydrophilic silica/water interfaces; 2) combination [stretch+bend] bands of water at the silica surface appearing at ~5000-5200 cm -1. 3) Overtones of water stretching modes at silica/water interfaces. The most important conclusions from these studies are outlined below. 1. Non-hydrogen bonded hydroxyls at silica/water interface. Typically SFG-studies of mineral/water interfaces (in particular, silica/water) have focused on the most pronounced features - peaks of H-bonded hydroxyls at ~3150 and ~3450 cm -1. We have been able to systematically observe and study a weaker peak at ~3670 - 3700 cm -1. This peak becomes more pronounced as the pH of aqueous phase decreases, as well as the ionic strength increases, indicating that the hydroxyls corresponding to this spectral feature are situated in a very close proximity to the surface. Isotopic dilution experiments indicate that the 3700 cm -1 feature is not due to asymmetric OH stretches as was suggested before. Based on our results, we suggest that this spectral feature corresponds to hydroxyls of water molecules at the silica surface that cannot hydrogen bond with silanol groups because of the lower density of silanols compared to H2O. We believe this to be the first surface-specific study of non-hydrogen bonded hydroxyls at silica, a surface widely accepted as hydrophilic. 2. SFG spectroscopy of [ν(OH)+δ(HOH)] combination bands of water at silica surface. We have extended SFG spectroscopy of the interfacial hydroxyls at mineral/water surfaces into the near-IR frequency range. The studies of overtones of interfacial OH(OD) groups will provide information on the anharmonicity of such species, and thus on the energy of dissociation. In addition, the positions of the overtone frequencies of the hydroxyls are more sensitive to interactions with the environment than the fundamental stretch frequencies. Our particular focus has been to study the stretch+bend combination band nu comb nu;(OH)+delta;(HOH) of liquid water which occurs in the near-IR spectral range at ~5000-5200 cm -1. It is typically much weaker in the FTIR absorption spectra than the fundamental transitions of the OH stretches or HOH bending, similar to overtones of these modes. We have performed, what we believe to be, the first surface-specific vibrational SFG spectroscopic measurements of combination bands of water molecules at silica surfaces. SFG spectroscopy of water combination band allows access to the water bending mode (delta~1600 cm -1), which still has not been observed in sum-frequency. / Chemistry
75

Monolayers of cationic surfactants at the air-water and oil-water interfaces

Knock, Mona Marie January 2003 (has links)
Monolayers of the cationic surfactant hexadecyltrimethylammonium halide (CTAX, where X = F¯, Cl¯, Br¯, and I¯) have been studied at the air-water and oilwater interfaces. At the air-water interface, the effects of the halide counterion and the addition of counterion were investigated. Sum-frequency spectroscopy (SFS), ellipsometry, and surface tensiometry indicated that the counterion changed the efficiency and effectiveness of the surfactant, both decreasing in the order of Br¯> Cl¯>F¯. The addition of salt in the form of 0.1 M KX was found to reduce the cmc but had little effect on the limiting area per molecule attained at the cmc, which increased from 44 Å<sup>2</sup> for CTAB to 65 Å<sup>2</sup> for CTAC and ca. 94 Å<sup>2</sup> for CTAF. Neither SFS nor ellipsometry provided any firm evidence for specific effects of the halide ions on the structure of the surfactant monolayers. For CTAB monolayers in the absence of excess electrolyte, the effect of area per molecule on the sum-frequency (SF) spectra was studied. Mixed monolayers of CTAB and tetradecane at the air-water interface exhibit a first-order phase transition from a conformationally disordered to a conformationally ordered state as the temperature is lowered. The phase transition occurs ca. 11 °C above the bulk melting point of tetradecane. A new experimental arrangement is described for acquiring SF spectra from surfactants at the oil-water interface. The key features of this approach are the stabilisation of a thin oil film between a sapphire prism and an aqueous phase, and the use of total internal reflection to enhance the total signal and discriminate against signals from other interfaces in the system. With this new methodology, the first SF vibrational spectra of surfactant monolayers at an alkane-water interface were obtained. Surface tensiometry was used to characterise the monolayers further. The structure of CTAB monolayers at the hexadecane-water interface was determined by SFS and compared with monolayers of CTAB at the air-water interface. At low concentrations, CTAB/hexadecane showed the expected features in the C-H stretching region, characteristic of a conformationally disordered monolayer. As the bulk concentration approached the critical micelle concentration, the spectra changed to one characteristic of a more ordered, upright conformation. Ellipsometric measurements supported this conclusion. This qualitative structural change is not observed in analogous monolayers at the air-water interface or CCl<sub>4</sub>-water interface, or in surfactant solutions in contact with a hydrophobic solid surface.
76

Estudo de transistores orgânicos por espectroscopia vibracional não linear e microscopia por modulação de carga / Study of organic transistors by nonlinear vibrational spectroscopy and charge modulation microscopy

Gomes, Douglas José Correia 13 April 2018 (has links)
Esta Tese aborda o estudo de transistores por efeito de campo orgânicos (OFETs do inglês, Organic Feld-Effect Transistors). Entender o comportamento da carga acumulada no canal do OFET, a qual é responsável pelo processo de condução elétrica no dispositivo, é de grande importância para ajudar a melhorar sua eficiência ou a propor um modelo teórico que descreva o comportamento do transistor em todos os seus regimes de operação. Vários trabalhos na literatura investigam o campo elétrico na camada semicondutora do transistor (ao longo do canal) gerado pela acumulação de cargas, porém nenhum investiga o campo na camada dielétrica de OFETs, que é diretamente proporcional à carga acumulada no canal. Investigou-se inicialmente o campo elétrico na camada dielétrica do dispositivo por meio da espectroscopia vibracional por Geração de Soma de Frequências (espectroscopia SFG do inglês, Sum-Frequency Generation). Espectros SFG obtidos nos dispositivos polarizados exibiram uma banda em ~1720 cm-1, devido ao grupo carbonila da camada dielétrica orgânica (PMMA &#8211; poli(metil metacrilato)), cuja a amplitude foi proporcional à voltagem de porta aplicada, indicando que esses grupos polares foram orientados sob ação do intenso campo elétrico no dispositivo. Esse sinal SFG induzido pelo campo pode ser devido a duas contribuições, um termo não linear de segunda ordem (devido à reorientação molecular) e outro de terceira ordem (interação entre os campos ópticos e o campo estático no volume do material). Observamos uma redução quase completa do sinal SFG em altas temperaturas (próximas da Tg do polímero dielétrico), indicando que o mecanismo de reorientação molecular é o responsável pelo sinal SFG gerado. Foram realizadas então medidas preliminares de microscopia SFG para mapear esse sinal SFG ao longo do canal de OFETs a base dos polímeros N2200 (semicondutor) e PMMA (dielétrico). Os resultados conseguem demonstrar a variação da densidade de carga acumulada no canal quando o dispositivo está polarizado e próximo à saturação. Usando Microscopia por Modulação de Carga (microscopia CMM do inglês, Charge Modulation Microscopy), que é outro método não invasivo para investigar a acumulação de cargas em um dispositivo operando, mapeamos a distribuição de carga no canal desses OFETs com alta resolução espacial (sub-micrométrica). Além disso, uma simulação da densidade de carga esperada e dos perfis de CMM foi realizada usando um modelo ambipolar para OFETs. Com base nessas simulações, propusemos uma modulação de onda quadrada do OFET, que permite uma comparação mais direta dos perfis de CMM com o perfil de densidade de carga ao longo do canal do transistor. Usando o esquema proposto, esses perfis foram medidos e comparados com o esperado com base no modelo ambipolar. Em geral os perfis de densidade de carga obtidos concordam bem com o modelo, usando apenas um único parâmetro global ajustável, exceto muito próximo do eletrodo de dreno e no regime de saturação profunda, quando os experimentos apresentam um artefato devido à eletro-absorção e não permitem uma comparação precisa com o modelo. Portanto, espera-se que esta Tese tenha contribuído para o avanço de técnicas de caracterização da distribuição de carga em OFETs, e assim melhorar o entendimento de seus mecanismos de funcionamento. / This Thesis deals with the study of Organic Field Effect Transistors (OFETs). Understanding the behavior of the accumulated charge along the OFET channel, which is responsible for the electrical conduction process in the device, is of great importance for improving its efficiency or proposing a theoretical model that describes the behavior of the transistor in all its operating regimes. Several studies in the literature investigate the electric field in the semiconductor layer of the transistor (along the channel) generated by the charge accumulation, but none investigates the field in the OFET dielectric layer, which is directly proportional to the charge accumulated in the channel. The electric field in the dielectric layer of the device was initially investigated by Sum-Frequency Generation (SFG) vibrational spectroscopy. SFG spectra obtained in the polarized devices exhibited a band at ~ 1720 cm-1, due to the carbonyl group of the organic dielectric layer (PMMA - poly (methyl methacrylate)), whose amplitude was proportional to the applied gate voltage, indicating that these polar groups were oriented by the intense electric field in the device. This field-induced SFG signal may be due to two contributions, a second order non-linear term (due to molecular reorientation) and a third order term (interaction between the optical fields and the static field in the material volume). We observed an almost complete reduction of the SFG signal at high temperatures (close to the Tg of the dielectric polymer), indicating that the molecular reorientation mechanism is responsible for the generated SFG signal. Preliminary SFG microscopy measurements were performed to map this SFG signal along the channel of OFET fabricated with N2200 (semiconductor) and PMMA (dielectric) polymers. The results demonstrate the variation of the accumulated charge density along the channel when the device is polarized and close to saturation. Using Charge Modulation Microscopy (CMM), which is another noninvasive method to investigate the accumulation of charges in an operating device, we mapped the charge distribution in the channel of these OFETs with high spatial resolution (sub-micrometer). In addition, a simulation of the expected charge density and CMM profiles was performed using an ambipolar model for OFETs. Based on these simulations, we proposed a square-wave modulation of the OFET, which allows a more direct comparison of the CMM profiles with the charge density profile. Using the proposed scheme, these profiles along the transistor channel were measured and compared with those expected from the ambipolar model. In general, the obtained charge density profiles agree well with the model, using only a single global adjustable parameter, except very close to the drain electrode and in the deep saturation regime, when the experiments have an artifact due to the electro-absorption and do not allow a precise comparison with the model. Therefore, it is expected that this Thesis has contributed to the advancement of techniques to characterize the charge distribution in OFETs, and thus improve the understanding of its operating mechanisms. Keywords: Field-effect transistors. Organic electronics. Nonlinear optics. Sum-frequency generation. Polarization of dielectrics. Charge modulation microscopy. Metal-insulator-semiconductor capacitor.
77

Alguns aspectos acerca da adsorção de alcanotióis e bases nitrogenadas em ouro via espectroscopia não linear e microscopia de tunelamento de elétrons / Some aspects concerning the adsorption of alkanethiols and uracil derivates on Au via nonlinear spectroscopy and scanning tunneling microscopy

Aguiar, Hilton Barbosa de 15 February 2007 (has links)
Estudos de interface têm presenciado um recente crescimento devido as novas propriedades físico-químicas, que puderam ser explorados com o advento de técnicas com resolução ao nível molecular/atômico. Dessas técnicas, dois ramos que merecem destaque são as Microscopias de Varredura por Ponta de Prova e Espectroscopias Óticas. Neste trabalho fazemos uso de algumas destas técnicas (o Microscópio de Tunelamento de Elétrons e Espectroscopia Vibracional por Geração de Soma de Freqüências) para estudar a adsorção de moléculas alifáticas e aromáticas em Au. Dois casos são abordados: como a rugosidade do substrato influencia no mecanismo de automontagem de monocamadas de alcanotióis e a automontagem de derivados de uracil em interfaces eletroquímicas. No primeiro caso, mostra-se que a quantidade de defeitos moleculares na monocamada adsorvida e extremamente sensível a rugosidade do substrato utilizado. Unem-se os resultados das técnicas acima aos resultados de sondas eletroquímica para se chegar a um modelo. Também e estudado a dependência das etapas de fisisorção e quimisorção em função da concentração da solução de alcanotiól. Para o segundo caso, um derivado halogenado do uracil (5-fluorouracil), mostra-se como a substituição química na base nitrogenada leva a diferentes mecanismos de formação de monocamadas na interface eletroquímica. Imagens de Microscopia de Tunelamento de Elétrons com resolução atômica e molecular mostram que em densidade de cargas negativas as moléculas estão fisisorvidas, porém não formam estruturas periódicas em contraste com uracil e timina, entretanto em densidades de cargas positivas formam estruturas periódicas quimisorvidas, assim como uracil e timina. E discutido como são diferentes os mecanismos de interação intermolecular: no caso dos alcanotiois preponderando às interações de van der Waals e no caso dos derivados de uracil pelas ligações via pontes de hidrogênio são dominantes. / Interface science has experienced a new rebirth since the development of new probes with atomic/molecular resolution, giving new insights about the physical-chemical properties, which differ substantially from the bulk. Among these techniques, two branches deserve special attention: the Scanning Probe Microscopies and Optical Spectroscopy. In this work, two derivatives of theses techniques (the Scanning Tunnelling Microscopy and Vibrational Spectroscopy by Sum-Frequency Generation) are combined giving new insights about the molecular adsorption onto Au. Two examples are focused: how roughness plays a key role in the structure of self-assembled alkanethiol monolayer and the uracil derivatives self-assembling at electrochemical interfaces. For the former, it has been shown that the amount of defects on the adsorbed monolayer is highly sensitive to substrate roughness. Combining the results of each technique with a well-known electrochemical probe, a physical model is proposed. The physisorbed and chemisorbed states are studied as a function of alkanethiol solution concentration as well. For the later case, the chemical substitution of uracil leads to drastically different results for the physisorbed phase (negative charge densities), compared to uracil and thymine. In the chemisorbed phase (positive charge densities) imaging with molecular resolution is achieved showing a quasi-hexagonal structure, similar to the structure of thymine and uracil. It is discussed what are the main driving forces for the self-assembling mechanism: van der Waal interactions for the alkanethiols and hydrogen bonding for uracil derivatives.
78

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules. The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.
79

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
<p>In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules.</p><p>The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.</p>
80

Sum frequency generation study of CO adsorbed on palladium single crystal and nanoparticles : adsorption and catalytic oxidation as a function of size

Wang, Jijin 05 December 2013 (has links) (PDF)
The CO reaction on metals is of great interest experimentally and theoretically because it serves as a model system to understand molecular chemisorption and catalyzed reactions on metals. This thesis aims at progressing along the general trends of surface science: bridging the pressure and material gaps in the study of catalysts. Sum Frequency Generation (SFG) is at the heart of this work. It involves a nonlinear optical process with an IR pulse induced coherent first-order polarization up-converted by a visible pulse into a second-order polarization at the sum frequency. In this thesis it is used to record CO vibrational spectra on the Pd nanoparticles (NP)/MgO/Ag(100) to understand the adsorption and oxidation thanks to its specific advantages in surface science: sensitivity and surface selectivity. The questions proposed are the possible roles of the adsorption sites which only exist on the NPs, the effect of the size of NPs and the presence of oxygen on the CO adsorption and catalytic reactivity, the effect of adsorption of oxygen (from 'normal' - dissociative chemisorption to 'sub-surface'), the variation of reactivity of CO in the different sites when pressure and temperature increase. (1) We have studied CO adsorption on Pd(100) as a reference. Below a CO coverage of 0.5 ML SFG results confirm previous IRAS studies. Above 0.5 ML, we have observed in much more details than previously two vibrational bands assigned to CO at compressed and uncompressed bridge sites, of which we have measured the frequency and intensity and the decoherence time T₂ as a function of coverage. (2) Pd NP size effect on CO adsorption is studied (from Pd(100) to particles with about 300 atoms). At pressures below 10⁻³ mbar the CO spectra on a coalesced layer and on large NPs are dominated by the same bridge band as on Pd(100). The CO singleton frequency decreases with coverage, revealing the evolution of chemisorption with size. DFT calculations done at ENS Lyon reveal that the main mechanism is the strain induced by the substrate which increases the Pd-Pd bondlength, favors electron back donation to CO, weakens the CO bond and probably reinforce the CO-metal bond. (3) Because of a limit of our maximal temperature, we have to study the CO catalytic oxidation in an excess of oxygen to avoid self-poisoning by CO. The results strongly suggest that bridge sites are the key sites in catalysis in our experimental condition. However, while a fraction of bridge sites are more reactive on NPs, a large fraction of them seem less reactive with respect to Pd(100). The reactivity of CO on (100) facet decreases at smaller NP size. It emerges the ideal that the reaction proceeds by the most reactive sites, and that the other sites are only reservoir in reactivity, if the diffusion between sites are high enough. Oxygen modifies the adsorption of co-reactants. In the case of CO + O / Pd NPs / MgO, below 10⁻⁴ mbar oxygen does not seem to influence significantly CO adsorption; between 10⁻³ and 10⁻¹ mbar the spectroscopic signature of CO compression disappears, and above 1 mbar a new class of a top sites appears, suggesting that some oxygen species (perhaps "subsurface") favors CO adsorption on linear sites. A pump-probe experiment has been done to compare the effect of pump on different adsorption sites. All this confirms the interest of SFG vibrational spectroscopy for catalysis. An additional contribution of this thesis to SFG is the study of the spectro-temporal aspects of SFG emission. SFG spectra containing several bands are modeled in details based on an ODT/Au system and compared to experimental spectra, showing that in SFG spectra are affected by the spectro-temporal shape of the visible laser. The standard deconvolution method used in the literature is only approximate. Accurate spectro-temporal spectrum modeling is required to evaluate precisely the relative intensities when several bands are present.

Page generated in 0.0832 seconds