Spelling suggestions: "subject:"superfície mínima"" "subject:"superfície mínimos""
51 |
Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifoldsRamos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
|
52 |
Superfícies Invariantes no Espaço Homogêneo Sol com Curvatura Constante.Neto., Guilherme Luiz de Oliveira 27 July 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:04Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 816279 bytes, checksum: 28c5081e37dbd539abb463a0ed89b87c (MD5)
Previous issue date: 2012-07-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this paper we studied surfaces with constant mean curvature and surfaces with
constant Gaussian curvature in the Sol space which are invariant under the action of
two one-parameter subgroups of isometries of the ambient space. Furthermore, we
classify the surfaces that satisfy a relationship of type k1 = mk2, where k1 and k2 are
the principal curvatures of the surface and m ∈ R. / O presente trabalho aborda um estudo das superfícies com curvatura média constante
e das superfícies com curvatura Gaussiana constante no espaço Sol que são
invariantes sob a ação de dois grupos a 1-parâmetro de isometrias do espaço ambiente.
Além disso, classificamos as superfícies que satisfazem uma relação do tipo
k1 = mk2, onde k1 e k2 são as curvaturas principais da superfície e m ∈ R.
|
53 |
Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifoldsRamos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
|
54 |
Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifoldsRamos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
|
55 |
Superfícies mínimas de fronteira livre na bola tridimensional / Free Boundary minimal surfaces in the unit 3-ballSantos, Thaynara Cecilia 11 May 2018 (has links)
In this dissertation, we study a characterization of the flat equatorial disk and the critical catenoid in the unitary ball B3 of R3 in terms of its second fundamental form. The work developed here is based on the article “A gap theorem for free boundary minimal surfaces in the three-ball” by Lucas Ambrozio and Ivaldo Nunes. / Nesta dissertação, estudamos uma caracterização do disco equatorial plano e do catenóide crítico na bola unitária B3 do R3 em termos da sua segunda forma fundamental. O trabalho aqui desenvolvido baseia-se no artigo “A gap theorem for free boundary minimal surfaces in the three-ball” de Lucas Ambrozio e Ivaldo Nunes.
|
56 |
Superfícies mínimas de Laguerre e geometria isotrópica / Laguerre geoemtry surfaces and isotropic geometryReyes, Edwin Oswaldo Salinas 29 February 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-08-04T19:38:03Z
No. of bitstreams: 2
Mestrado - Edwin Oswaldo Salinas Reyes - 2016.pdf: 1254340 bytes, checksum: f20230521814efa37f16e24f8d80f74e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-05T12:33:56Z (GMT) No. of bitstreams: 2
Mestrado - Edwin Oswaldo Salinas Reyes - 2016.pdf: 1254340 bytes, checksum: f20230521814efa37f16e24f8d80f74e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-08-05T12:33:56Z (GMT). No. of bitstreams: 2
Mestrado - Edwin Oswaldo Salinas Reyes - 2016.pdf: 1254340 bytes, checksum: f20230521814efa37f16e24f8d80f74e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-02-29 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we refer to the study of a new method and simple approach to minimal
surface Laguerre in isotropic model of Laguerre geometry as the bi-harmonic function
graph. We developed the isotropic geometry which studies the geometric properties
invariant under certain affine transformations in Euclidean space, and the fundamental
elements of Laguerre geometry which are spheres orienteds and plans orienteds, and
properties which are invariant on the transformation of Laguerre. In addition, we will
show a close relationship between minimal surfaces Laguerre spherical type and isotropic
minimal surfaces which are given by the graph of harmonic functions and minimal
Euclidean surfaces. Finally, the duality metric in the isotropic space is used to develop
an isotropic exchange for minimal surfaces Laguerre in certain Lie transformation of
Laguerre minimal surfaces in Euclidean space. / Neste trabalho nos referimos ao estudo de um novo método de desenvolvimento de
superfícies mínimas de Laguerre vista no modelo isotrópico da geometria de Laguerre
como o gráfico de funções bi-harmônicas. Desenvolvemos a geometria isotrópica a qual
estuda as propriedades geométricas invariantes por certas transformações afines no espaço
Euclidiano, os elementos fundamentais da geometria de Laguerre as quais são esferas
e planos orientados e as propriedades as quais são invariantes sobre as transformações
de Laguerre. Além disso, mostraremos uma relação fechada entre superfícies mínimas
de Laguerre do tipo esférico e superfícies mínimas isotrópicas as quais são dadas pelo
gráfico de funções harmônicas e superfícies mínimas Euclidianas. Finalmente, a métrica
dual no espaço isotrópico é utilizada para desenvolver uma contrapartida isotrópica de
superfícies mínimas de Laguerre em certas transformações de Lie de superfícies mínimas
de Laguerre no espaço Euclidiano.
|
Page generated in 0.0651 seconds