31 |
Outflow and Accretion Physics in Active Galactic NucleiMcGraw, Sean Michael 21 September 2016 (has links)
No description available.
|
32 |
Fourier-plane modeling of the jet in the nucleus of galaxy M81Ramessur, Arvind 04 1900 (has links)
The mildly active nuclear region in the galaxy M81 (henceforth, M81‹) is one of
the nearest low-luminosity active galactic nuclei (LLAGN) whose structure is marginally
resolved when probed with Very Long Baseline Interferometry (VLBI). Motivated by the
way resolved radio sources usually appear on the smallest scales, i.e., a core with a one-
sided jet structure, we developed a strictly one-sided, asymmetric triangular model, which
we call ASYM, with brightness distribution along a line segment on the sky, with maximum
brightness at one end of the segment fading linearly to zero at the other end. The ASYM
model is compared and contrasted with an elliptical Gaussian model (hereafter, GAUS), by
fitting existing VLBI data of M81‹ at 39 epochs between 1993 and 2003 at 8.4 and 5.0 GHz
with the two models. Contrary to what we envisioned, we find that for 77% of our epochs,
a simple GAUS model fits the visibility data of M81‹ at 8.4 GHz better (i.e., has a lower
reduced 2) than the ASYM model. We conclude that M81‹ is not strictly a one-sided,
asymmetric jetted source; as is thought to be the case for the majority of AGN observed
at VLBI scales. Our results imply that M81‹ is mostly symmetrical with a significant jet
counterpart which cannot be overlooked. / School of Interdisciplinary Research and Graduate Studies (SIRGS) / M. Sc. (Astronomy)
|
33 |
Activité du trou noir supermassif au centre de la Galaxie / Activity of the supermassive black hole at the Galactic centerClavel, Maïca 12 September 2014 (has links)
Le centre de la Galaxie abrite un trou noir supermassif, Sagittarius A*. Sa proximité en fait un laboratoire privilégié pour étudier les phénomènes d’accrétion à l’œuvre autour des trous noirs et contraindre le cycle d’activité de ces astres. Sgr A* est actuellement extrêmement peu lumineux et malgré des sursauts d’activité quotidiens sa luminosité demeure au moins huit ordres de grandeur en dessous de sa luminosité d’Eddington. Cet objet est ainsi l’un des trous noirs supermassifs connus les moins lumineux. Les mécanismes radiatifs à l’origine des variations quotidiennes observées ne sont pas clairement identifiés. Nous présentons les résultats d’une campagne d’observation multi-longueurs d’onde visant à mesurer le spectre de ces événements simultanément en rayons X et en infrarouge proche, à l’aide de l’observatoire XMM-Newton et de l’instrument VLT/NACO. Les données infrarouges obtenues grâce à la technique de spectro-imagerie en bande large ont permis d’étudier la variabilité du spectre de Sgr A* en infrarouge. Les incertitudes liées aux erreurs systématiques sont encore importantes mais les premiers tests réalisés semblent indiquer que l’indice spectral pourrait dépendre de la luminosité du trou noir. Sur des échelles de temps plus grandes, nous montrons également que Sgr A* n’a pas toujours été aussi peu actif. Des traces de son activité passée sont en effet visibles dans la matière moléculaire directement autour du trou noir, notamment sous la forme d’un rayonnement réfléchi visible dans la raie de fluorescence du fer à 6.4 keV. Nous avons réalisé une étude complète et systématique des variations de cette émission détectée dans la zone moléculaire centrale en utilisant les observatoires Chandra et XMM-Newton. Nos résultats confirment que Sgr A* a connu des sursauts intenses au cours des derniers siècles, au moins six ordre de grandeur en dessus de la luminosité actuelle. En particulier, nous avons mis en évidence, pour la première fois, la présence de deux événements transitoires distincts de relativement courte durée, probablement liés à des événements catastrophiques. Ces résultats constituent une première étape pour relier l’activité de ce trou noir spécifique aux autres noyaux de galaxie présents dans l’Univers. / Sagittarius A⋆ is the supermassive black hole at the Galactic center. Due to its proximity, this specimen is an excellent laboratory to study the accretion processes occurring around black holes and to constrain the duty cycle of these objects. Sgr A* is currently extremely faint and despite the detection of daily flares, its luminosity remains at least eight orders of magnitude below its Eddington luminosity, making this specimen one of the least luminous known supermassive black holes. The radiative processes responsible for the daily variations of its luminosity have not been clearly identified yet. We present the results of a multi-wavelength campaign observing Sgr A* simultaneously in X-rays and in the near-infrared, using the XMM-Newton observatory and the VLT/NACO instrument. We studied the spectral variability of Sgr A* using the infrared data we obtained through a spectro-imaging technique. Uncertainties linked to the systematic errors are still large but the first tests applied seem to show that the spectral index of Sgr A* could depend on the black hole luminosity. On longer timescales, we demonstrate that Sgr A* experienced a higher level of activity in the recent past. Indeed, echoes of its past activity can be detected in the molecular material surrounding the black hole. They are traced by a strong signal in the iron fluorescence line at 6.4 keV. We achieved a complete and systematic study of this variable emission detected from the central molecular zone, using Chandra and XMM-Newton observatories. Our results confirm that Sgr A* experienced intense flares in the past few centuries, with a luminosity at least six orders of magnitude higher than its current one. In particular, we highlight for the first time the existence of two distinct transient events of relatively short duration, which are probably due to catastrophic events. These results are the first step needed to include Sgr A*’s activity into a broader understanding of the galactic nuclei.
|
34 |
Analyse optique à très haute résolution spectrale de la galaxie NGC 1275Vigneron, Benjamin 08 1900 (has links)
Les galaxies centrales d'amas de galaxies constituent un environnement particulier pouvant parfois être entouré, dans le domaine optique, d'un système filamentaire complexe et étendu. L'étude de ces structures permet de mieux comprendre le phénomène de rétroaction impliqué au sein de ces galaxies et lié à la présence d'un trou noir supermassif en leur centre. La formation de jets et de bulles remplis d'émission radio conduit à réchauffer et sculpter le milieu intra-amas environnant. Ce réchauffement empêche ainsi le refroidissement du gaz intra-amas et donc la formation stellaire.
Les filaments visibles dans le domaine optique ne constituent qu'une partie de la structure multiphasique qui entoure la galaxie centrale d'amas. En effet, plusieurs observations en rayons X du gaz intra-amas et radio du gaz moléculaire montrent clairement des corrélations spatiales entre toutes ces types d'émissions. Néanmoins, plusieurs points restent encore incertains concernant ces nébuleuses filamentaires. Deux modèles principaux s'opposent ainsi pour tenter d'expliquer l'origine de leur formation et le phénomène d'ionisation du gaz n'est toujours pas déterminé avec certitude.
Dès lors, l'étude de la nébuleuse filamentaire entourant la galaxie centrale de l’amas de Persée, NGC 1275, au moyen d'observations à très haute résolution spectrale à l'aide de l'instrument SITELLE (Spectromètre imageur à transformée de Fourier pour l’étude en long et en large de raies d’émission), se révèle fondamentale. Ce spectromètre imageur à transformée de Fourier installé au télescope Canada-France-Hawaï dispose de caractéristiques exceptionnelles nous permettant d'étudier la nébuleuse filamentaire de NGC 1275 dans son entièreté. En effet, le champ de vue extrêmement large de SITELLE ($11' \times 11'$) ainsi que sa capacité d'atteindre de très hautes résolutions spectrales en font un atout de choix pour l'étude de telle structure.
Dans ce mémoire, nous avons analysé de nouvelles observations de NGC 1275 obtenues avec SITELLE, à une très haute résolution spectrale de $R = \lambda/\Delta\lambda = 7000$. L'analyse de ces observations a permis de renouveler les cartes de vitesse, flux et dispersion en vitesse au sein de la nébuleuse filamentaire, démontrant ainsi que la région centrale semble plus dynamique qu'anticipée auparavant. De plus, grâce à la très haute résolution spectrale atteinte au sein de ces données, une analyse détaillée des raies d'émission de [SII] a pu être menée, révélant dès lors plus d'informations sur la densité du gaz au sein des filaments. L'étude de ratio de raies permet également de mieux cerner le mécanisme d'ionisation ayant lieu au sein de cette structure. Finalement, cette étude de données à très haute résolution spectrale des filaments permettra à terme d'obtenir les diagrammes BPT offrant ainsi une meilleure compréhension du phénomène d'ionisation. Une étude sera également menée sur les multiples composantes en vitesse visible localement dans la région centrale des filaments et pouvant être résolues. Enfin, ces données serviront de base pour les futures observations en rayon X de l'instrument XRISM (\textit{X-Ray Imaging and Spectroscopy Mission}). / The central cluster galaxies constitute a particular environment that can sometimes be surrounded, in the optical domain, by a complex and extended filamentary system. The study of these structures makes it possible to better understand the feedback phenomenon involved within these galaxies and linked to the presence of a supermassive black hole in their center. The formation of jets, streams and bubbles filled with radio emissions that it entails leads to heating and sculpting the surrounding intra-cluster medium. This heating thus prevents the cooling of the gas by emission and therefore the formation of stars. Thus, the filaments visible in the optical domain are only part of the multiphase structure that surrounds the central cluster galaxy. Indeed, several X-ray and radio observations clearly show spatial correlations between all these types of emissions. Nevertheless, several points still remain uncertain concerning filamentary nebulae. Two main models thus oppose each other in an attempt to explain the origin of their formation, either through precipitation or lifted up in the wake of radio bubbles, and the phenomenon of gas ionization is still not determined with certainty.
Therefore, the study of the filamentary nebula surrounding the central cluster galaxy of the Perseus cluster, NGC 1275, by means of very high spectral resolution observations using the SITELLE instrument (Spectromètre imageur à transformée de Fourier pour l’étude en long et en large de raies d’émission), can yield fundamental results that will shed light on the origin and evolution of these filamentary nebulae. SITELLE is a Fourier transform imaging spectrometer installed at the Canada-France-Hawaii telescope that has exceptional characteristics allowing us to study the filamentary nebula of NGC 1275 in its entirety. Indeed, the extremely wide field of view of SITELLE ($11' \times 11'$) as well as its capacity to reach very high spectral resolutions make it an instrument of choice for the study of such structures.
Here, we present the analysis of new observations of NGC 1275 taken with SITELLE at very high spectral resolution of $R = \lambda/\Delta\lambda = 7000$. The analysis of these observations has thus made it possible to produce new maps of velocity, flux and velocity dispersion within the filamentary nebula, thus demonstrating that the central region seems more dynamic than previously anticipated. In addition, thanks to the very high spectral resolution achieved within these data, a detailed analysis of the emission lines of [SII] could be carried out, revealing more information on the density of the gas within the filaments. The study of line ratios also makes it possible to better understand the ionization mechanism taking place within this structure. Finally, this study of very high spectral resolution data from the filaments will ultimately make it possible to obtain BPT diagrams, thus offering a better understanding of the ionization phenomenon. The multiple velocity components, locally visible and resolved in the central region of the filaments, will also be studied. Finally, these data will serve as a basis for future X-ray observations from the XRISM (\textit{X-Ray Imaging and Spectroscopy Mission}) instrument.
|
35 |
Mesurer la masse de trous noirs supermassifs à l’aide de l’apprentissage automatiqueChemaly, David 07 1900 (has links)
Des percées récentes ont été faites dans l’étude des trous noirs supermassifs (SMBH), grâce en grande partie à l’équipe du télescope de l’horizon des évènements (EHT). Cependant, déterminer la masse de ces entités colossales à des décalages vers le rouge élevés reste un défi de taille pour les astronomes. Il existe diverses méthodes directes et indirectes pour mesurer la masse de SMBHs. La méthode directe la plus précise consiste à résoudre la cinématique du gaz moléculaire, un traceur froid, dans la sphère d’influence (SOI) du SMBH. La SOI est définie comme la région où le potentiel gravitationnel du SMBH domine sur celui de la galaxie hôte. Par contre, puisque la masse d’un SMBH est négligeable face à la masse d’une galaxie, la SOI est, d’un point de vue astronomique, très petite, typiquement de quelques dizaines de parsecs. Par conséquent, il faut une très haute résolution spatiale pour étudier la SOI d’un SMBH et pouvoir adéquatement mesurer sa masse. C’est cette nécessité d’une haute résolution spatiale qui limite la mesure de masse de SMBHs à de plus grandes distances. Pour briser cette barrière, il nous faut donc trouver une manière d’améliorer la résolution spatiale d’objets observés à un plus au décalage vers le rouge.
Le phénomène des lentilles gravitationnelles fortes survient lorsqu’une source lumineuse en arrière-plan se trouve alignée avec un objet massif en avant-plan, le long de la ligne de visée d’un observateur. Cette disposition a pour conséquence de distordre l’image observée de la source en arrière-plan. Puisque cette distorsion est inconnue et non-linéaire, l’analyse de la source devient nettement plus complexe. Cependant, ce phénomène a également pour effet d’étirer, d’agrandir et d’amplifier l’image de la source, permettant ainsi de reconstituer la source avec une résolution spatiale considérablement améliorée, compte tenu de sa distance initiale par rapport à l’observateur.
L’objectif de ce projet consiste à développer une chaîne de simulations visant à étudier la faisabilité de la mesure de la masse d’un trou noir supermassif (SMBH) par cinéma- tique du gaz moléculaire à un décalage vers le rouge plus élevé, en utilisant l’apprentissage automatique pour tirer parti du grossissement généré par la distorsion d’une forte lentille gravitationnelle. Pour ce faire, nous générons de manière réaliste des observations du gaz moléculaire obtenues par le Grand Réseau d’Antennes Millimétrique/Submillimétrique de l’Atacama (ALMA). Ces données sont produites à partir de la suite de simulations hydrody- namiques Rétroaction dans des Environnements Réalistes (FIRE). Dans chaque simulation, l’effet cinématique du SMBH est intégré, en supposant le gaz moléculaire virialisé. Ensuite, le flux d’émission du gaz moléculaire est calculé en fonction de sa vitesse, température, densité, fraction de H2, décalage vers le rouge et taille dans le ciel. Le cube ALMA est généré en tenant compte de la résolution spatiale et spectrale, qui dépendent du nombre d’antennes, de leur configuration et du temps d’exposition. Finalement, l’effet de la forte lentille gravi- tationnelle est introduit par la rétro-propagation du faisceau lumineux en fonction du profil de masse de l’ellipsoïde isotherme singulière (SIE).
L’exploitation de ces données ALMA simulées est testée dans le cadre d’un problème de régression directe. Nous entraînons un réseau de neurones à convolution (CNN) à apprendre à prédire la masse d’un SMBH à partir des données simulées, sans prendre en compte l’effet de la lentille. Le réseau prédit la masse du SMBH ainsi que son incertitude, en supposant une distribution a posteriori gaussienne. Les résultats sont convaincants : plus la masse du SMBH est grande, plus la prédiction du réseau est précise et exacte. Tout comme avec les méthodes conventionnelles, le réseau est uniquement capable de prédire la masse du SMBH tant que la résolution spatiale des données permet de résoudre la SOI. De plus, les cartes de saillance du réseau confirment que celui-ci utilise l’information contenue dans la SOI pour prédire la masse du SMBH. Dans les travaux à venir, l’effet des lentilles gravitationnelles fortes sera introduit dans les données pour évaluer s’il devient possible de mesurer la masse de ces mêmes SMBHs, mais à un décalage vers le rouge plus élevé. / Recent breakthroughs have been made in the study of supermassive black holes (SMBHs), thanks largely to the Event Horizon Telescope (EHT) team. However, determining the mass of these colossal entities at high redshifts remains a major challenge for astronomers. There are various direct and indirect methods for measuring the mass of SMBHs. The most accurate direct method involves resolving the kinematics of the molecular gas, a cold tracer, in the SMBH’s sphere of influence (SOI). The SOI is defined as the region where the gravitational potential of the SMBH dominates that of the host galaxy. However, since the mass of a SMBH is negligible compared to the mass of a galaxy, the SOI is, from an astronomical point of view, very small, typically a few tens of parsecs. As a result, very high spatial resolution is required to study the SOI of a SMBH and adequately measure its mass. It is this need for high spatial resolution that limits mass measurements of SMBHs at larger distances. To break this barrier, we need to find a way to improve the spatial resolution of objects observed at higher redshifts.
The phenomenon of strong gravitational lensing occurs when a light source in the back- ground is aligned with a massive object in the foreground, along an observer’s line of sight. This arrangement distorts the observed image of the background source. Since this distor- tion is unknown and non-linear, analysis of the source becomes considerably more complex. However, this phenomenon also has the effect of stretching, enlarging and amplifying the image of the source, enabling the source to be reconstructed with considerably improved spatial resolution, given its initial distance from the observer.
The aim of this project is to develop a chain of simulations to study the feasibility of measuring the mass of a supermassive black hole (SMBH) by kinematics of molecular gas at higher redshift, using machine learning to take advantage of the magnification generated by the distortion of a strong gravitational lens. To this end, we realistically generate observations of molecular gas obtained by the Atacama Large Millimeter/Submillimeter Antenna Array (ALMA). These data are generated from the Feedback in Realistic Environments (FIRE) suite of hydrodynamic simulations. In each simulation, the kinematic effect of the SMBH is integrated, assuming virialized molecular gas. Next, the emission flux of the molecular gas is calculated as a function of its velocity, temperature, density, H2 fraction, redshift and sky size. The ALMA cube is generated taking into account spatial and spectral resolution, which depend on the number of antennas, their configuration and exposure time. Finally, the effect of strong gravitational lensing is introduced by back-propagating the light beam according to the mass profile of the singular isothermal ellipsoid (SIE).
The exploitation of these simulated ALMA data is tested in a direct regression problem. We train a convolution neural network (CNN) to learn to predict the mass of an SMBH from the simulated data, without taking into account the effect of the lens. The network predicts the mass of the SMBH as well as its uncertainty, assuming a Gaussian a posteriori distribution. The results are convincing: the greater the mass of the SMBH, the more precise and accurate the network’s prediction. As with conventional methods, the network is only able to predict the mass of the SMBH as long as the spatial resolution of the data allows the SOI to be resolved. Furthermore, the network’s saliency maps confirm that it uses the information contained in the SOI to predict the mass of the SMBH. In future work, the effect of strong gravitational lensing will be introduced into the data to assess whether it becomes possible to measure the mass of these same SMBHs, but at a higher redshift.
|
36 |
Avancées récentes dans l'observation et l'application des techniques d'apprentissage automatique aux études des galaxies et des amas de galaxiesRhea, Carter 07 1900 (has links)
Les galaxies, qui sont des ensembles de milliards d’étoiles, de gaz, de poussière et de matière
sombre — un mystère persistant — se répandent à travers l’univers. Il est reconnu que
presque toutes les galaxies hébergent un trou noir supermassif capable d’augmenter ou de
diminuer le taux de formation stellaire via un mécanisme appelé rétroaction. Les conglomérats massifs de galaxies gravitationnellement liés, nommés amas de galaxies, présentent le
même phénomène astronomique, mais à une échelle plus grande. Ces phénomènes laissent
des traces dans l’environnement qui sont observables grâce aux instruments contemporains.
Cette thèse se concentre sur deux axes principaux : l’application des algorithmes
d’apprentissage automatique pour améliorer l’analyse optique des galaxies et des amas de
galaxies, ainsi que l’utilisation d’un algorithme spécifique en apprentissage automatique, la
machine d’inférence récurrente (MIR), capable de déconvoluer les spectres en rayons X de
sources astrophysiques.
Dans la première moitié de cette thèse, nous discutons du développement de LUCI, un
logiciel conçu pour ajuster les cubes de données de SITELLE à l’aide de l’apprentissage automatique. Ce logiciel vise à accélérer l’algorithme d’ajustement et à obtenir les meilleurs
résultats possibles. LUCI a été développé dans le but de fournir un algorithme d’ajustement
polyvalent, personnalisable, facile à utiliser et assisté par l’apprentissage automatique. Les
deux premiers articles de cette thèse décrivent en détail LUCI et les algorithmes qui le
sous-tendent. Après cette présentation, plusieurs projets scientifiques auxquels j’ai contribué sont mis en avant, illustrant l’utilisation de LUCI. Grâce aux innovations apportées par
LUCI, nous avons pu étudier plus en détail le gaz ionisé diffus dans des galaxies proches
telles que NGC 4449, analyser le gaz ionisé dans une galaxie en chute vers l’amas de Persée,
et cartographier en détail le gaz ionisé dans un amas de galaxies à grand décalage vers le
rouge (voir section 2.3). Les deux articles suivants, dans les sections 2.4, 2.5, explorent les méthodes d’apprentissage automatique pour effectuer des tâches qui auraient traditionnellement été réalisées par des algorithmes standard : calculer les rapports des lignes d’émission
des spectres, démêler les systèmes en fusion et catégoriser les régions d’émission.
Dans l’avant-dernier article du chapitre 2, section 2.7, nous développons une nouvelle
technique basée sur les algorithmes d’apprentissage automatique qui segmente un cube hyperspectral en régions de source et régions de l’arrière-plan, construit un modèle local de la
région à l’arrière-plan, et interpole ce modèle sur les pixels de la source.
Dans le troisième chapitre, nous nous concentrons sur les techniques de déconvolution
des spectres en rayons X, un objectif qui, jusqu’à présent, reste insaisissable. Cela nous
permet, pour la première fois, d’observer le spectre intrinsèque du gaz chaud dans les amas
de galaxies. Lorsqu’un spectre en rayons X est observé avec un observatoire en rayons X,
le spectre intrinsèque n’est pas directement capturé mais plutôt, il est convolué avec la
réponse instrumentale. Dans le cas des observatoires contemporains, cet effet est dramatique car la réponse instrumentale étale les lignes d’émission en une caractéristique simple et
elle varie considérablement en fonction du temps et de la position. Les méthodes standard
pour extraire les paramètres physiques du spectre utilisent des techniques de pré-ajustement
qui augmentent les coûts computationnels et ajoutent des complexités d’ajustement. Par
conséquent, une méthodologie de déconvolution des spectres observés peut mener à une
modélisation plus précise. C’est avec cela en tête que nous explorons les méthodes de déconvolution des spectres en rayons X, nous donnant ainsi accès aux spectres intrinsèques.
Le premier article de ce chapitre, section 3.1, démontre que les techniques traditionnelles de
déconvolution ne fonctionnent pas suffisamment pour les spectres complexes, même si elles
fonctionnent pour les spectres simples comme les lois de puissance. Dans l’article suivant,
nous utilisons un nouvel algorithme d’apprentissage automatique, la MIR, pour effectuer la
déconvolution. Dans ce papier, nous montrons le potentiel de cette nouvelle méthode sur
des données synthétiques et réelles. Notre MIR entraînée reconstruit le spectre intrinsèque
et les réalisations du modèle antérieur avec un niveau de bruit d’un écart-type, démontrant
que la MIR est capable, au moins pour les spectres synthétiques, de récupérer les spectres
intrinsèques. Dans le dernier article de cette thèse, nous explorons également l’efficacité et les limitations de la MIR dans la déconvolution des spectres en rayons X. La MIR est entraînée
sur une base de données synthétique couvrant une gamme plus large de paramètres. Même
pour les modèles complexes, la MIR est capable de déconvoluer les spectres synthétiques à
un niveau de bruit d’un écart-type. Cependant, lorsqu’elle est appliquée aux données réelles,
les reconstructions ne sont pas en accord avec les observations réelles. Cela indique soit que
les données synthétiques ne représentent pas fidèlement les observations réelles, soit qu’il y a
un problème avec la MIR. Nous concluons cet article en soulignant l’intérêt d’appliquer des
modèles de diffusion pour pallier les limitations de la MIR. / Galaxies, combinations of billions of stars, gas, dust, and the ever-mysterious dark matter, permeate the universe. It is understood that nearly all galaxies host a supermassive
black hole capable of either enhancing or reducing stellar formation through a mechanism
known as active galactic nuclei feedback. Massive conglomerations of gravitationally bound
galaxies, known as galaxy clusters, demonstrate the same astrophysical phenomena but on
a much larger scale. These phenomena leave traces on their surrounding medium that can
be observed through modern instrumentation.
This thesis is aligned along two main research axes: the application of machine learning
algorithms to enhance the optical analysis of galaxies and galaxy clusters and the application
of a particular machine learning algorithm, the recurrent inference machine, to deconvolve
X-ray spectra of astrophysical sources.
In the first half of the thesis, we discuss the development of LUCI – a software package
created to fit SITELLE datacubes using machine learning to speed up the fitting algorithms
and increase their performance. LUCI was borne out of a desire to have a general-purpose
line fitting algorithm that is highly customizable, easy to use, and enhanced by machine
learning algorithms for SITELLE. The first two articles presented in this thesis describe
LUCI and the algorithms that drive the package. After presenting the software, we showcase
several scientific projects that LUCI has been used in which I contributed. Owing to the
innovations in LUCI, we were able to expand our study of diffuse ionized gas in nearby
galaxies such as NGC 4449, study the ionized gas in an infalling galaxy in the Perseus
cluster, and make detailed maps of a high-redshift galaxy cluster’s ionized gas (see 2.3).
The following three papers, sections 2.4, 2.5, and 2.6, explore machine learning methods
to accomplish tasks normally reserved for standard algorithms: calculating line ratios from spectra and disentangling multi emission components in merging systems, and categorizing
emission line regions.
In the second to last paper of chapter 2, section 2.7, we develop a novel technique based
off machine learning algorithms to segment an hyperspectral data cube into source and
background regions, build a local model of the background region, and interpolate this model
over source pixels.
In the final paper of this chapter, we use LUCI to analyze multi-filter SITELLE observations of NGC 1275. This analysis reveals homogeneity in the ionization mechanism in the
extended filaments. Moreover, they solidify previous findings that the emission nebula is not
undergoing star formation except for two small and distinct regions.
In chapter 3, we focus on techniques for deconvolving X-ray spectra, a goal that has,
until now, remained elusive. By deconvolving X-ray spectra, we will be able to, for the first
time, observe the intrinsic X-ray spectrum of the hot gas in galaxy clusters. When an X-ray
spectrum is observed with an X-ray observatory, the intrinsic source spectrum is not itself
captured but rather the intrinsic spectrum convolved with the instrumental response. In
the case of contemporary X-ray observatories, this effect is dramatic since the instrumental
response smears emission lines into a single feature and changes considerably as a function
of time and the location of the detector.
Therefore, having a methodology to deconvolve observed spectra can lead to more accurate modeling of the underlying physical phenomena. It is with this in mind that we explore
methods to deconvolve the X-ray spectra and thus have access to the intrinsic spectrum
of the astrophyiscal source. The first article presented in this chapter, section 3.1, demonstrates that traditional inverse techniques do not reliably deconvolve complex X-ray spectra
from the instrumental response even though they are sufficient for simple spectra such as
a powerlaw. In the following article, we employ a new machine learning algorithm, the recurrent inference machine (RIM), to tackle the problem of X-ray spectral deconvolution. In
this paper, we show the potential of this new method as applied to synthetic and real data.
Our trained RIM reconstructs the intrinsic matrix and forward model realizations below the
1-σ noise-level proving that the RIM is capable, at least for synthetic data, to recover the intrinsic spectra. In the final article of this thesis, we further explore the RIM’s ability and
limitations in X-ray spectral deconvolution. The RIM is trained on a larger set of synthetic
spectra covering a wider parameter range. The RIM is able to deconvolve the sythetic Xray spectrum at the 1-σ noise level even for complicated physical models. However, when
applied to real observations, the RIM reconstructions do not match theoretical predictions.
We conclude this paper by motivating the application of state-of-the-art diffusion models to
address the limitations of the RIM.
|
37 |
Observations multi-longueur d’onde d’amas et de groupes de galaxies prochesGendron-Marsolais, Marie-Lou 07 1900 (has links)
No description available.
|
38 |
Gravitational Waves From Inspiralling Compact Binaries : 3PN Polarisations, Angular Momentum Flux And Applications To Astrophysics And CosmologySinha, Siddhartha January 2008 (has links)
Binary systems comprising of compact objects like neutron stars (NS) and/or black holes (BH) lose their energy and angular momentum via gravitational waves (GW). Radiation reaction due to the emission of GW results in a gradual shrinking of the binary orbit and an accompanying gradual increase in the orbital frequency. The preliminary phase of the binary evolution when the radiation-reaction time-scale is much larger than the orbital time-scale is called the inspiral phase. GW emitted during the final stages of the inspiral phase constitute one of the most important sources for the ground-based laser interferometric GW detectors like LIGO, VIRGO and the proposed space-based detector LISA. For the ground-based detectors, NS and/or stellar mass BH binaries are primary sources, while for LISA super-massive BH (SMBH) binaries are potential targets. Inspiralling compact binaries (ICB) are among the prime targets for interferometric detectors because using approximation schemes in general relativity (GR) like the post-Minkowskian (PM) and the post-Newtonian (PN) approximations one can compute the GW emitted by them with sufficient accuracy both for their detection and parameter estimation leading to GW astronomy.
The extreme weakness of gravitational interactions implies that if a GW signal from an ICB is incident on a detector, it will be buried in the noisy detector output. Therefore, sophisticated data analysis techniques are required for detecting the signal in presence of the dominant noise and also estimating the parameters of the signal. From the pre-calculated theoretical waveforms called templates, one already knows the structure of the waveform from an ICB. The technique for detecting signals which are of known form in a noisy detector is matched filtering. This technique consists of cross-correlating the output of a noisy detector assumed to contain the signal of known form with a set of templates. It then finds an ‘optimal’ template that would produce, on average, the highest signal-to-noise ratio (SNR). The efficient performance of matched filtering as a data-analysis strategy for GW signals from ICB presupposes very accurate theoretical templates. Slight mismatches between the signal and the template will result in a loss of signal to noise ratio. Computing very accurate theoretical templates and including effects such as eccentricity are challenging tasks for the theoreticians. This thesis addresses some of the issues related to the waveform modelling of the ICB and their implications for GW data analysis.
It is known theoretically that compact binaries reduce their eccentricity through the emission of GW. When GW signals from prototype ICB reach the GW detector bandwidth, their orbits are almost circular. Hence one usually models the binary orbit to be circular for computation of the search templates. The waveform from an ICB in a circular orbit is, at any given PN order of approximation, a linear combination of a finite number of harmonics of the orbital frequency. At the lowest order of approximation, called the Newtonian order, the waveform comprises a single harmonic at twice the orbital frequency. Inclusion of higher order PN corrections lead to the appearance of higher harmonics of the orbital frequency. Since the amplitudes of the higher harmonics contain higher powers of the PN expansion parameter, relative to the Newtonian order, they are referred to as amplitude corrections. The phase of each harmonic, determined by the orbital phase, is known upto 3.5PN order (nPN is the order of approximation equivalent to terms ~(v/c)2n beyond the Newtonian order, where v denotes the binary’s orbital velocity and c is the speed of light). Matched filtering is more sensitive to the phase of the signal rather than its amplitude, since the correlation builds up as long as the signal and the template remain in phase. Motivated by this fact, search templates so far have been a waveform model involving only the dominant harmonic (at twice the orbital frequency), although the phase evolution itself is included upto the maximum available PN order. Such waveforms, in which all amplitude corrections are neglected, but the phase is treated to the maximum available order, are called restricted waveforms (RWF) and these are generally used in the data-analysis of ground-based detectors and also simulated searches for the planned LISA. However, recent studies, in the case of ground-based interferometers, showed that going beyond the RWF approximation could improve the efficiency of detection as well as parameter estimation of the inspiral signal.
After a brief overview of the properties of GW and their detection strategies in chapter 1, in chapters 2 and 3, we investigate the implications of going beyond the RWF, in the context of the planned space-based Laser Interferometric Space Antenna (LISA). The sensitivity of ground-based detectors is limited by seismic noise below 20Hz. On the other hand, the space-based LISA will be designed to be sensitive to GWs of frequency (10−4 _1)Hz. The most important source in this frequency band are supermassive BH (SMBH) binaries. There is strong observational evidence for the existence of SMBH with masses in the range of in most galactic nuclei. Mergers of such galaxies result in SMBH binaries whose evolution is governed by the emission of GW. Observation of the GW from SMBH binaries at high redshifts is one of the major science goals of LISA. These observations will allow us to probe the evolution of SMBHs and structure formation and provide an unique opportunity to test General Relativity (and its alternatives) in the strong field regime of the theory. Observing SMBH coalescences with high (100-1000) SNR is crucial for performing all the aforementioned tests.
The LISA bandwidth (10−4_ 1)Hz determines the range of masses accessible to LISA because the inspiral signal would end when the system’s orbital frequency reaches the mass-dependent last stable orbit (LSO). In the test-mass approximation, the angular velocity ι at LSO is given by where M is the total mass of the binary. Search templates using the RWF, which contains only the dominant harmonic at twice the orbital frequency, cannot extract power in the signal beyond This further implies that the frequency range [0.1, 100] mHz corresponds to the range for the total mass of BH binaries that would be accessible to LISA. In chapter 2, we show that inclusion of higher harmonics will enhance the mass-range of LISA (for the same frequency range) and allow for the detection of SMBH binaries with total masses higher than The template employed in chapter 2 includes amplitude corrections upto 2.5PN order, while keeping the phase upto 3.5PN order. We call this template the full waveform (FWF). The FWF defined above contains higher harmonics of the orbital frequency, the highest of them being 7 times the orbital frequency. For a SMBH binary with total mass the dominant harmonic at LSO is less than the lower cut-off of the LISA bandwidth. Therefore, if one uses the RWF as a search template, this system is ‘invisible’ to LISA. However, the seventh harmonic can still enter the LISA bandwidth and produce a significant SNR and thus allow its detection. With the FWF, LISA can observe sources which are favoured by astronomical observations, but not observable with the RWF. More specifically, with the inclusion of all known harmonics LISA will be able to observe SMBH coalescences with total mass (and mass-ratio 0.1) for a low frequency cut-off of 10−4Hz (10−5Hz) with an SNR up to ~ 60 (~30) at a distance of 3 Gpc.
The orbital motion of LISA around the Sun induces frequency, phase and amplitude modulations in the observed GW signal. These modulations carry information about both the source’s location and orientation. Determination of the angular coordinates of the source also allows determination of the luminosity distance of SMBH binaries. Therefore, SMBH binaries are often referred to as GW “standard sirens” (analogous to the electromagnetic “standard candles”). LISA would also be able to measure the “redshifted” masses of the component black holes with good accuracy for sources up to redshifts of a few. However, GW observations alone cannot provide any information about the redshift of the source. If the host galaxy or galaxy cluster is known one can disentangle the redshift from the masses by optical measurement of the redshift. This would not only allow one to extract the “physical” masses, but also provide an exciting possibility to study the luminosity distance-redshift relation providing a totally independent confirmation of the cosmological parameters. Further, this combined observation can be used to map the distribution of black hole masses as a function of redshift. Another outstanding issue in present day cosmology in which LISA can play a role is the dark energy and its physical origin. Probing the equation-of-state-ratio (w(z)) provides an important clue to the question of whether dark energy is truly a cosmological constant (i.e., w = -1). Assuming the Universe to be spatially flat, a combination of WMAP and Supernova Legacy Survey (SNLS) data yields significant constraints on Without including the spatial flatness as a prior, WMAP, large-scale structure and supernova data place a stringent constraint on the dark energy equation of state, For this to be possible, LISA should (a) measure the luminosity distance to the source with a good accuracy and (b) localize the coalescence event on the sky with good angular resolution so that the host galaxy/galaxy cluster can be uniquely identified. Based on analysis with the RWF, it is found that LISA’s angular resolution is not good enough to identify the source galaxy or galaxy cluster, and that other forms of identification would be needed. Secondly, weak lensing effects would corrupt the distance estimation to the same level as LISA’s systematic error.
In chapter 3, we study the problem of parameter estimation in the context of LISA, but using the FWF. We investigate systematically the variation in parameter estimation with PN orders by critically examining the role of higher harmonics in the fast GW phasing and their interplay with the slow modulations induced due to LISA’s motion. More importantly, we explore the improvement in the estimation of the luminosity distance and the angular parameters due to the inclusion of higher harmonics in the waveform. We translate the error in the angular resolution to obtain the number of galaxies (or galaxy clusters) within the error box on the sky. We find that independent of the angular position of the source on the sky, higher harmonics improve LISA’s performance on both counts raised in earlier works based on the RWF. We show that the angular resolution enhances typically by a factor of ~2-500 (greater at higher masses) and the error on the estimation of the luminosity distance goes down by a factor of ~ 2-100 (again, larger at higher masses). For many possible sky positions and orientations of the source, the inaccuracy in our measurement of the dark energy would be at the level of a few percent, so that it would only be limited by weak lensing. We conclude that LISA could provide interesting constraints on cosmological parameters, especially the dark energy equation-of-state, and yet circumvent all the lower rungs of the cosmic distance ladder.
Having emphasized the need to consider the FWF as a more powerful template, in chapter 4 we calculate a higher order term in the amplitude corrections of the waveform. In chapters 2 & 3, the FWF incorporated amplitude corrections upto 2.5PN order. In chapter 4 the waveform is calculated upto 3PN order. Recent progress in Numerical Relativity (NR) has resulted in computation of the late inspiral and subsequent merger and ringdown phases of the binary evolution (where PN theory does not hold good) by a full-fledged numerical integration of the Einstein field equations. A new field has emerged recently consisting of high-accuracy comparisons between the PN predictions and the numerically-generated waveforms. Such comparisons and matching to the PN results have proved currently to be very successful. They clearly show the need to include high PN corrections not only for the evolution of the binary’s orbital phase but also for the modulation of the gravitational amplitude. This leads to one more motivation for the work in this chapter: providing the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high PN prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown.
For the computation of waveforms from the inspiralling compact binaries one needs to solve the two-body problem in general relativity. The nonlinear structure of general relativity prevents one from obtaining a general solution to this problem. The two-body problem is tackled using the multipolar post-Minkowskian (MPM) wave generation formalism. The MPM formalism describes the radiation field of any isolated post-Newtonian source. The radiation field is first of all parametrized by means of two sets of radiative multipole moments. These moments are then related (by means of an algorithm for solving the non-linearities of the field equations) to the so-called canonical moments which constitute some useful intermediaries for describing the external field of the source. The canonical moments are then expressed in terms of the operational source moments obtained by matching to a PN source and are given by explicit integrals extending over the matter source and gravitational field. The extension of the waveform by half a PN order requires as inputs the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also require the 3PN extension of the source multipole moments in the case of compact binaries. The waveform in the far-zone consists of two types of terms, instantaneous and hereditary. The instantaneous terms are determined by the dynamical state of the binary at the retarded time. The hereditary terms, on the other hand, depend on the entire past history of the source. These terms originate from the nonlinear interactions between the various multipole moments and also from backscattering off the curved spacetime generated by the waves themselves. In this chapter, we compute the contributions of all the instantaneous and hereditary terms (which include tails, tails-of-tails and memory integrals) up to 3PN order. The end results of this chapter are given in terms of both the 3PN plus and cross polarizations and the separate spin-weighted spherical harmonic modes.
Though most of the sources will be in circular orbits by the time the GWs emitted by the system enter the sensitivity band of the laser interferometers, astrophysical scenarios such as Kozai mechanism could produce binaries which have nonzero eccentricity. Studies have shown that filtering the signal from an eccentric binary with circular orbit templates could significantly degrade the SNR. For constructing a phasing formula for eccentric binaries one has to compute the energy and angular momentum fluxes carried away by the GWs and then compute how the orbital elements evolve with time under gravitational radiation reaction.
The far-zone energy and angular momentum fluxes, like the waveform, contain both instantaneous and hereditary contributions. The complete 3PN energy flux and instantaneous terms in the 3PN angular momentum flux are already known. In chapter 5, the hereditary terms in the 3PN angular momentum flux from an ICB moving in quasi-elliptical orbits are computed. A semi-analytic method in the frequency domain is used to compute the hereditary contributions. At 3PN order, the quasi-Keplerian representation of elliptical orbits at 1PN order is required. To calculate the tail contributions we exploit the doubly periodic nature of the motion to average the 3PN fluxes over the binary’s orbit. The hereditary part of the angular momentum flux provided here has to be supplemented with the instantaneous part to obtain the final input needed for the construction of templates for binaries moving in elliptical orbits, a class of sources for both the space based detectors and the ground based ones. Using the hereditary contributions in the 3PN energy flux, we also compute the 3PN accurate hereditary contributions to the secular evolution of the orbital elements of the quasi-Keplerian orbit description.
|
39 |
Nouvelles observations radio de l'amas de galaxies MS 0735.6+7421 avec le Karl G. Jansky Very Large ArrayBégin, Théophile 07 1900 (has links)
Les amas des galaxies sont l’une des plus grandes structures liées gravitationnellement de l’univers. Leur dynamique est complexe et bien que plusieurs études multi-longueur d’onde ont été effectuées depuis la fin du 20ème siècle, il persiste plusieurs incertitudes sur les subtilités de leur dynamique. À ce jour, le consensus scientifique est que les trous noirs supermassifs actifs au centre des amas ont un impact important sur l’évolution de ces structures. Le trou noir central agit comme centre gravitationnel, mais lorsque ce trou noir est actif, son rôle ne se limite pas seulement à son impact gravitationnel. D’une part, les trous noirs actifs ont un rôle crucial dans l’émission thermique des amas. En effet, les jets radio influencent l’émission rayons-X des amas en poussant mécaniquement le milieu intra-amas qui émet en rayons-X via l’émission Bremsstrahlung. Ce phénomène engendre la formation de cavités rayons-X qui constituent une preuve de la rétroaction énergétique du trou noir sur l’ensemble de l’amas. Un tel phénomène est nécessaire afin d’expliquer les résultats observationnels qui témoignent d’un refroidissement moins important que prédit théoriquement au centre des amas à cœur froid. D’autre part, il existe de plus en plus d’études qui supportent l’hypothèse que les trous noirs actifs ont un rôle dans la (ré-)accélération de particules relativistes responsables de l’émission synchrotron au cœur des amas à cœur froid. Ces structures appelées mini-halos sont typiquement diffuses en radio et donc difficiles à détecter. Dans ce mémoire, nous étudierons en détail l’émission radio de l’amas de galaxies massif à cœur froid MS 0735.6+7421 (z = 0.216). Cet amas est unique puisqu’il possède les jets radio les plus énergétiques détectés au centre d’un amas à cœur froid. Il s’agit donc d’un exemple de trou noir actif parmi les plus extrêmes connus. Cet objet constitue ainsi une cible parfaite afin d’étudier le lien qui unit la rétroaction du trou noir actif central et l’émission synchrotron au centre des amas à cœur froid. Pour réaliser cette étude, nous avons effectué une analyse radio exhaustive de MS 0735.6+7421 à l’aide de données acquises sur le Karl G. Jansky Very Large Array. Cette analyse a permis de détecter une nouvelle structure radio diffuse jamais détectée auparavant. Cette nouvelle structure possède une puissance radio à 1.4 GHz qui concorde avec celles des mini-halos les plus lumineux. Le résultat principal de notre étude supporte donc l’hypothèse selon laquelle il existe un lien fondamental entre la rétroaction du trou noir actif central et la formation de mini-halos au centre des amas à cœur froid. / Galaxy clusters are one of the largest gravitationally bound structures in the universe. They exhibit complex dynamics and even though several multi-wavelength studies have been conducted since the end of the 20th century, there are still a lot of uncertainties concerning their evolution. To this day, the scientific consensus is that the active supermassive black hole at the center of the cluster has a profound impact on the cluster’s evolution. Indeed, the central supermassive black hole has a substantial gravitational impact, but when the black hole actively accretes material, its role goes beyond its gravitational influence. Active supermassive black holes have a crucial role in terms of the thermal emission in clusters. Indeed, the radio jets influence the X-ray emission of clusters by mechanically pushing the intracluster medium which emits in X-ray via Bremsstrahlung emission. This leads to the
formation of X-ray cavities which are proof of the energetic feedback of the central supermassive black hole on the cluster. Such a phenomenon is required to reconcile the observational results that report less cooling at the center of cool core clusters than what is theoretically predicted. Moreover, there are more and more studies that support the hypothesis that active supermassive black holes have a crucial role in the (re-)acceleration of seed particles responsible for synchrotron emission at the center of cool core clusters. These structures are named mini-halos and are usually difficult to detect because they are diffuse. In this Master’s thesis, we will study the radio emission of the massive cool core galaxy cluster
MS 0735.6+7421 (z = 0.216). This cluster is unique because it exhibits the most powerful radio jets ever detected at the center of a cool core cluster. It thus contains one of the most powerful active supermassive black holes known. This object is a perfect target to study the link between active black hole feedback and synchrotron emission in cool core clusters. To conduct this study, we performed a radio analysis of MS 0735.6+7421 with new data obtained with the Karl G. Jansky Very Large Array. This analysis led to the discovery of an extended diffuse radio structure. This newly detected structure has a radio power at 1.4 GHz that matches the most luminous mini-halos known in the literature. The principal result of our study argues in favor of the hypothesis that there is a fundamental link between active
black hole feedback and the formation of mini-halos at the center of cool core clusters.
|
40 |
L'impact des trous noirs les plus massifs de l’Univers sur le coeur des amas de galaxiesRichard-Laferrière, Annabelle 08 1900 (has links)
No description available.
|
Page generated in 0.0519 seconds