• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Imaging of atherosclerosis / Molekulare Bildgebung der Atherosklerose

Michalska, Marta January 2013 (has links) (PDF)
Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskuläre Adhäsionsmoleküle wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den frühen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molekülen mit spezifischen Kontrastmitteln ist daher eine Möglichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem frühen Zeitpunkt zu visualisieren und eine frühe Prävention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie ermöglicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entzündlicher Prozesse während der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegenüber unspezifischer USPIOs ein erhöhtes Potenzial bei der Untersuchung der Atherosklerose in sich trägt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molekül ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der frühen Phase der Entzündung die vaskulären Zelladhäsionsmoleküle überexprimiert und auch kontinuierlich, während der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionstüchtigkeit und das Vermögen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT ermöglichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in frühen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) Mäusen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der frühen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue Möglichkeiten zur Früherkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation früher Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- Mäusen. / Atherosclerosis is an active and progressive condition where the vascular cell adhesion molecules as VCAM-1 play a vital role controlling the recruitment of immune cells within the early and advanced plaques. Therefore targeting of VCAM-1 molecules with specific contrast agent bears the possibility to monitor the VCAM-1 expression, visualize the plaque progression starting at the early alterations, and help to establish early prevention of atherosclerosis before the origin of the thrombus formation, of which late recognition leads to myocardial infarction. Furthermore noninvasive magnetic resonance imaging (MRI) offers the benefit of combining the molecular and anatomic data and would thus enable specific detection of VCAM-1 targeted iron oxide contrast agent within inflammatory process of atherosclerosis. This thesis exactly presents the VCAM-1 concept as a suitable molecular approach and the potential of specific ultrasmall superparamagnetic iron oxide (USPIO) conjugated to the VCAM-1 binding peptide over unspecific non-targeted USPIO particles for evaluation of atherosclerosis. This work firstly demonstrated that selection of VCAM-1 molecules offers a good and potential strategy for imaging of atherosclerosis, as these vascular cell adhesion molecules are highly expressed in the early phase of inflammation and also continuously up-regulated within the advanced plaques. Secondly, this thesis showed the proof of principle and capability of the newly designed USPIO contrast agent conjugated to the specific cyclic peptide for VCAM-1 recognition. The experimental studies including ultra-high field MRI enabled further ex vivo and in vivo detection of applied USPIO-VCAM-1 particles within the aortic root region of early and advanced atherosclerotic plaques of 12 and 30 week old apolipoprotein E deficient (ApoE-/-) mice. Using a combination of histology and electron microscopy, this study for the first time pointed to distribution of targeted USPIO-VCAM-1 particles within plaque cells expressing VCAM-1 not only in luminal regions but also in deeper medial smooth muscle cell areas. Hence functionalized USPIO particles targeting VCAM-1 molecules allow specific and sensitive detection of early and advanced plaques at the molecular level, giving the new possibilities for early recognition of atherosclerotic plaques before the appearance of advanced and prone to rupture lesions. In contrast to the functionalized USPIO-VCAM-1, utilized non-targeted USPIO particles did not succeed in early plaque 6 identification limiting visualization of atherosclerosis to advanced forms in atherosclerotic ApoE-/- mice.
2

Untersuchungen zur Biodistribution multipotenter mesenchymaler Stromazellen nach intraläsionaler Applikation in induzierte Defekte equiner Oberflächlicher Beugesehnen

Horstmeier, Carolin 26 July 2017 (has links)
Einleitung: Die Tendinopathie der Oberflächlichen Beugesehne (OBS) ist eine häufig auftretende orthopädische Erkrankung beim Pferd, die meist zu einer langfristigen oder sogar endgültigen Leistungsdepression führt. Bisher besteht kein therapeutischer Goldstandard, jedoch wird die Therapie mit multipotenten mesenchymalen Stromazellen (MSC) als aussichtsreich erachtet. Der Verbleib und der Wirkmechanismus dieser Zellen nach lokaler Applikation sind nicht hinreichend bekannt. Eine kombinierte Markierung der MSC mit superparamagnetischen Eisenoxidpartikeln (SPIO) und dem Fluoreszenzfarbstoff Rhodamin B ermöglicht die Analyse der Biodistribution mit Hilfe von Magnetresonanztomographie (MRT), histologischen und fluoreszenzbasierten Untersuchungen. Ziele: Wesentliches Ziel dieser Arbeit war die Untersuchung der lokalen Distribution intraläsional applizierter MSC sowie die Untersuchung einer potentiellen systemischen Verteilung und gezielten Einwanderung in anderes geschädigtes Gewebe. Weiterhin sollte die Anwendung des Magic Angle- Effektes in der MRT bezüglich Durchführbarkeit an stehenden Pferden und Effektivität des Zelltrackings evaluiert werden. Tiere, Material und Methoden: Bei 6 Pferden wurden im mittleren Teil der metakarpalen/-tarsalen OBS aller 4 Gliedmaßen Sehnenläsionen auf mechanisch-enzymatischem Wege induziert. Die für die Applikation aus Fettgewebe der Glutealregion gewonnenen, autologen MSC wurden mit Molday ION Rhodamine B (BioPAL, Inc., Worcester, USA) markiert. 3 Wochen nach Defektinduktion erfolgte die intraläsional Applikation der markierten MSC in die OBS einer Vorder- und einer Hintergliedmaße und Serum in die kontralateralen Kontrolldefekte. Im Zeitraum der Zellapplikation wurden mehrere venöse Blutproben durchflusszytometrisch auf Rhodamin B-positive Zellen hin untersucht. Insgesamt erfolgten 10 MRT-Untersuchungen der Vordergliedmaßen bis zur 24. Woche nach Zellapplikation in denen Standard- und Magic Angle-Aufnahmen angefertigt wurden. Bis zur 3. Woche nach Zellapplikation erfolgten 4 Standard-MRT-Untersuchungen der Hintergliedmaßen. T1- und T2*- gewichtete Sequenzen dienten bei beiden Aufnahmetechniken der Beurteilung SPIO-bedingter hypointenser Artefakte. 3 Wochen nach der Zellapplikation wurden Biopsien aus den OBS der Hintergliedmaßen entnommen. Zum gleichen Zeitpunkt erfolgte die Entnahme von subkutanem Fett- und Muskelgewebe aus dem Bereich der Fettentnahmestelle und aus der unbeschädigten kontralateralen Glutealregion. 24 Wochen nach Zellapplikation wurden die Tiere euthanasiert und die OBS der Vordergliedmaßen entnommen. Alle Gewebeproben wurden histologisch (Preußisch Blau Färbung) und fluoreszenzbasiert (Fluoreszenzmikroskopie, Durchflusszytometrie) untersucht. Ergebnisse: SPIO-bedingte hypointense Artefakte waren über 24 Wochen in MRT-Aufnahmen der MSC-behandelten OBS vorhanden. Die Signalintensität war konstant niedrig, jedoch verringerte sich das Volumen der hypointensen Artefakte mit der Zeit. Diese ließ ein Abnehmen der Zahl markierter MSC vermuten, was in histologischen Analysen bestätigt wurde. Der Magic Angle-Effekt konnte in allen OBS der Vordergliedmaßen und zu allen Zeitpunkten erzeugt werden. Die Abgrenzbarkeit der hypointensen Artefakte gegenüber dem in Standard-MRT-Aufnahmen hypointensen gesunden Sehnengewebe erhöhte sich, jedoch gab es keine Unterschiede in der Volumenmessung der SPIO- bedingten hypointensen Artefakte zwischen Standard- und Magic Angle-Aufnahmen. Histologisch konnten intrazelluläre Preußisch Blau-positive Zellen in den MSC-behandelten und kontralateralen Sehnenläsionen sowie in anderem geschädigten Gewebe detektiert werden. Diese Beobachtungen bestätigten sich durch den Nachweis Rhodamin B-positiver Zellen. Durchflusszytometrische Untersuchungen von Blutproben zeigten, dass Rhodamin B-positive Zellen vor allem innerhalb der ersten 12 Stunden nach der Zellapplikation im venösen Blut vorhanden waren. Die intraläsional applizierten MSC verblieben hauptsächlich in der behandelten Sehnenläsionen, welches durch das konstant niedrige Signal der Artefakte in der MRT und durch die Detektion markierter Zellen in entsprechenden histologischen Proben belegt wurde. Schlussfolgerung: Eine langfristige Verfolgung SPIO-markierter MSC ist in vivo im MRT durch beide Aufnahmetechniken möglich. Die Abgrenzbarkeit SPIO-bedingter hypointenser Artefakte kann durch den Magic Angle-Effekt erhöht werden. Allerdings ist die Sensitivität der Zellverfolgung in der MRT begrenzt und somit kann eine geringe Zellmigration nicht detektiert werden. Trotz der Hinweise auf eine systemische Verteilung und Migration der markierten Zellen in anderes geschädigtes Gewebe, verbleibt ein Großteil der markierten MSC nach der intraläsionalen Injektion in der behandelten OBS.
3

Die magnetresonanztomografische Darstellung mesenchymaler Stromazellen in equinem Sehnengewebe mit Hilfe des Magic-Angle-Effektes

Offhaus, Julia 20 June 2019 (has links)
Belastungsinduzierte Sehnen- und Bandschäden, besonders die der Oberflächlichen Beugesehne, sind eine der häufigsten muskuloskelettalen Erkrankungen bei Sportpferden. Die intraläsionale Anwendung von multipotenten mesenchymalen Stromazellen (MSC) stellt eine vielversprechende Therapieoption zur Reduktion der Rezidivraten dar. Der Verbleib der applizierten Zellen und ihre Wirkungsmechanismen sind jedoch noch nicht vollständig geklärt. Die Magnetresonanztomografie (MRT) ist ein hervorragendes Werkzeug zur Erkennung von Sehnengewebsabnormalitäten im distalen Gliedmaßenbereich sowie zum Verfolgen injizierter Zellen. Mit superparamagnetischen Eisenoxid-Partikeln (Spio) markierte MSC werden in der MRT als hypointense Artefakte sichtbar. Gesunde Sehnen zeigen jedoch auch ein hypointenses Signal, wodurch es nicht möglich ist, markierte Zellen von physiologischem Sehnengewebe zu unterscheiden. Ziel dieser Arbeit war die magnetresonanztomografische Darstellung Spio-markierter equiner MSC in unterschiedlichen Zellzahlen in equinem physiologischen Sehnengewebe mit Hilfe des Magic-Angle-Effektes. In der vorliegenden Arbeit wurden equine MSC mit Spio-Partikeln (BioPal Molday ION Rhodamine B, Inc., Worcester, USA) markiert und in präparierte Schnittinzisionen, in zuvor entnommenen Oberflächlichen Beugesehnen von Kadaverbeinen,in unterschiedlichen Zellzahlen von 106, 105, 104 MSC injiziert. Anschließend erfolgte eine magnetresonanztomografische Untersuchung der Sehnenkonstrukte jeweils in einem 90° sowie 55° Winkel zum Hauptmagnetfeld B0 in drei Magnetresonanztomografen unterschiedlicher Feldstärken (0,27 T (Tesla), 3 T, 7 T). Dabei wurden jeweils T1- und T2*- gewichtete 3D-Gradientenechosequenzen genutzt. Im Anschluss erfolgte eine histologische Validierung der magnetresonanztomografischen Ergebnisse mittels Preußischblau-, Diamino-2-Phenylindol-Färbung (DAPI) und Hämatoxylin-Eosin-Färbung. Im Nieder- und Hochfeld-MRT 3 T konnte eine signifikante Zunahme der Signalintensität der Oberflächlichen Beugesehne in der T1- und T2*-gewichteten Sequenz mit Hilfe des Magic-Angle-Effektes (Konstruktwinkelung von 55° zum Hauptmagnetfeld B0) im Vergleich zur 90° Standardwinkelung verzeichnet werden (p < 0,05). Des Weiteren konnte die Ausprägung des Magic-Angle-Effektes im 3 T-Hochfeldsystem in der T1- und T2*-gewichteten Sequenz als deutlicher beurteilt werden als im Niederfeldsystem (p < 0,05). Im 7 THochfeldsystem konnten keine signifikanten Unterschiede der Signalintensität der Oberflächlichen Beugesehne in den unterschiedlichen Sequenzen und Winkelungen der Sehnenkonstrukte zum Hauptmagnetfeld B0 gefunden werden. Die Detektion einer Zellzahl von 106 markierten MSC war sowohl im Nieder- als auch im Hochfeldsystem und sowohl in der T1- als auch in der T2*-gewichteten Sequenz mit Hilfe des Magic-Angle-Effektes sicher möglich (p < 0,05). Darüber hinaus konnte im Hochfeld-MRT 7 T ebenfalls eine Zellzahl von 104 markierten MSC visuell detektiert werden. Des Weiteren konnte im Nieder- sowie 3 THochfeldsystem bei einer Zellzahl von 106 und 105 ein höheres Kontrast-Rausch-Verhältnis der T1-gewichteten Sequenzen beider Winkeltechniken gegenüber der T2*-gewichteten Sequenzen festgestellt werden. Darüber hinaus stellte sich das Kontrast-Rausch-Verhältnis beider Sequenzen mit Hilfe des Magic-Angle-Effektes höher gegenüber der Standardwinkelung von 90° zum Hauptmagnetfeld B0 dar. Außerdem konnte mit Hilfe des Magic-Angle-Effektes bei einer Zellzahl von 106 und 105 ein erhöhtes Kontrast-Rausch-Verhältnis in den T1- und T2*-gewichteten Sequenzen des 3 T-Hochfeldsystems gegenüber der Standardwinkelung und des Niederfeldsystems ermittelt werden. Des Weiteren konnte in beiden Systemen eine Erhöhung des Kontrast-Rausch-Verhältnisses mit steigender Zellzahl beobachtet werden. Außerdem zeigte die T1-gewichtete Sequenz mit Hilfe des Magic-Angle- Effektes sowohl im Nieder- als auch im Hochfeldsystem das höchste Kontrast-Rausch-Verhältnis. Bei der qualitativen lichtmikroskopischen Auswertung der Preußischblau-gefärbten Proben konnte in allen Zellzahlen der Nachweis Preußischblau-positiver Strukturen erbracht werden. Der Großteil dieser positiven Strukturen war innerhalb spindelförmiger Zellen lokalisiert. Darüber hinaus konnte ein signifikant höheres Volumen Preußischblau-positiver MSC bei einer Zellzahl von 106 im Vergleich zu einer Zellzahl von 104 ermittelt werden (p <0,05). Des Weiteren konnte Fluoreszenzmikroskopisch in allen markierten Proben die Präsenz Rhodamin B-positiver Zellen entlang der Schnittinzisionen nachgewiesen werden. Schlussfolgerung: Spio-markierte MSC sind in Abhängigkeit von ihrer Zellzahl im Nieder- und Hochfeld-MRT nachweisbar. Es ist eine Detektion ab einer Zellzahl von 105 im Nieder- und Hochfeld-MRT 3 T möglich. Des Weiteren ist die Visualisierung markierter MSC in einer Zellzahl von 104 in einem Hochfeld-MRT 7 T realisierbar. Darüber hinaus ist es mit Hilfe des Magic-Angle-Effektes möglich Spio-markierte MSC in gesundem Sehnengewebe im Nieder- und Hochfeldsystem zu detektieren. Als besonders geeignet konnte aufgrund des höheren Kontrast-Rausch-Verhältnisses die T1-gewichtete Sequenz ermittelt werden. Die Technik dieser Studie kann für zukünftige in-vivo-Studien zur Biodistribution von MSC und dem longitudinalen Zelltracking im Organismus von großem Nutzen sein.:1 EINLEITUNG ................................................................................................................. 1 2 LITERATURÜBERSICHT .............................................................................................. 3 2.1 Anatomie und Physiologie der Sehne am Beispiel der Oberflächlichen Beugesehne des Pferdes ......................................................................................... 3 2.1.1 Makroskopische Anatomie der Oberflächlichen Beugesehne .................................. 3 2.1.2 Struktureller Aufbau und mikroskopische Anatomie ................................................ 6 2.2 Sehnenerkrankungen ............................................................................................... 7 2.2.1 Allgemeines und Definition ...................................................................................... 7 2.2.2 Pathophysiologie ..................................................................................................... 9 2.2.3 Sehnenheilung .......................................................................................................12 2.2.4 Diagnostik von Sehnenerkrankungen .....................................................................14 2.2.5 Therapie .................................................................................................................17 2.3 Multipotente Mesenchymale Stromazellen ............................................................21 2.3.1 Allgemeines ...........................................................................................................21 2.3.2 Einsatz von MSC bei Erkrankungen der equinen Oberflächlichen Beugesehne .....23 2.3.3 Wirkmechanismus ..................................................................................................24 2.3.4 Longitudinales Zelltracking .....................................................................................25 2.4 Magnetresonanztomografie ....................................................................................28 2.4.1 Allgemeines ...........................................................................................................28 2.4.2 Physikalische Prinzipien .........................................................................................28 2.4.3 Relaxation ..............................................................................................................30 2.4.4 Bildkontrast ............................................................................................................31 2.4.5 Repetitionszeit ........................................................................................................32 2.4.6 Echozeit .................................................................................................................32 2.4.7 Darstellung von Sehnen und Bändern ....................................................................33 2.4.8 Magic-Angle-Effekt .................................................................................................34 2.4.9 Suszeptibilitätsartefakte .........................................................................................35 3 ZIELSTELLUNG UND HYPOTHESEN .........................................................................38 4 MATERIAL UND METHODEN ......................................................................................39 4.1 Übersicht Versuchsaufbau......................................................................................39 4.2 Isolation der MSC ....................................................................................................39 4.3 Zellaufbereitung .......................................................................................................40 4.3.1 Expansion der MSC ...............................................................................................41 4.3.2 Markierung der MSC ..............................................................................................41 5.6 Histologie .................................................................................................................77 5.6.1 Preußischblau-Färbung ..........................................................................................77 5.6.2 Vergleich der Volumen der Preußischblau-positiven Strukturen zum Volumen der hypointensen Artefakte im MR-Bild ........................................................................79 5.6.3 Hämatoxylin-Eosin-Färbung ...................................................................................84 5.6.4 Diamino-2-Phenylindol- (DAPI) -Färbung ...............................................................85 6 DISKUSSION ................................................................................................................87 6.1 Diskussion Material und Methodik .........................................................................87 6.1.1 Equine Oberflächliche Beugesehne .......................................................................87 6.1.2 Zellmarkierung und Zellviabilität .............................................................................87 6.1.3 Magnetresonanztomografie ....................................................................................88 6.1.4 Histologie ...............................................................................................................89 6.2 Diskussion Ergebnisse ...........................................................................................90 6.2.1 Magnetresonanztomografie ....................................................................................90 6.2.2 Histologie ...............................................................................................................95 6.3 Schlussfolgerung aus den Ergebnissen ................................................................95 7 ZUSAMMENFASSUNG ................................................................................................96 8 SUMMARY....................................................................................................................98 9 LITERATURVERZEICHNIS ........................................................................................ 100 ANHANG ........................................................................................................................... 115 DANKSAGUNG ................................................................................................................. 120
4

Strategien zur funktionellen MR-Bildgebung von experimentellen Gliomen

Zimmer, Claus 10 April 2001 (has links)
Ziel der Untersuchungen war es, neue Strategien zu entwickeln, die zu einer Verbesserung der MR-Diagnostik von Gliomen führen. Im Vordergrund des Interesses stand dabei die MR-Charakterisierung von experimentellen Gliomen mittels superparamagnetischer Eisenoxide, wobei MION ("Monocrystalline-Iron-Oxide-Nanopartikel") als Modellsubstanz für einen Großteil der Untersuchungen benutzt wurde. In Experimenten zur Blut-Hirn-Schranke (BHS) wurde gezeigt, dass normales Hirngewebe jenseits der BHS mit Eisenoxiden erreicht werden kann, wenn artifiziell die BHS zuvor hyperosmotisch durch Mannitol-Infusion temporär geöffnet wurde. Neben der intrazellulären Aufnahme in Astrozyten werden Eisenoxide nach erfolgter BHS-Öffnung in signifikant höherem Maße von aktivierter Mikroglia phagozytiert. Nach selektiver Öffnung der BHS durch Bradykinin-Injektion in die A. carotis interna lässt sich selektiv der Transport von Eisenoxiden in das Gliomzentrum vergrößern. Am experimentellen Gliommodell ließ sich zeigen, dass intravenöse MION-Gabe zu einem charakteristischen ringförmigen Erscheinungsbild in der MRT der großen Tumoren führt: Die histologischen Untersuchungen bei mehreren Gliomarten (C6 und 9L) zeigen eindeutig die Phagozytose von Eisenpartikeln durch Gliomzellen selbst. Verglichen mit der Eisenoxid-Aufnahme in die Gliomzelle ist die Phagozytose der Eisenpartikel durch ortsständige Mikrogliazellen und Blutmakrophagen jedoch signifikant größer. Die intrazelluläre Aufnahme von MION durch Tumorzellen lies sich in Zellkulturexperimenten an verschiedenen Gliom- (C6, 9L) und Karzinom-Zelllinien (LX-1) bestätigen. In vitro konnte gezeigt werden dass die Konjugation von Transferrin (Tf) an eine Eisenoxidverbindung zu einer verstärkten intrazelluläre Aufnahme verglichen mit unkonjugiertem Verbindungen führt. Die Untersuchungen zur Bildgebung der Tumorvaskularisation von experimentellen Gliomen ergaben, dass durch die kombinatorische Anwendung eines kleinmolekularen und eines großmolekularen Markers mit anschließender einfacher Bildsubtraktion die vaskulären und interstitiellen Volumenfraktionen (VVF, IVF) ermittelt werden können. Auch die alleinige Injektion der noch experimentellen Blut-Pool-Marker MPEG-Pl-GdDTPA und Gadomer-17 ermöglicht im Tiermodell die quantitative Bestimmung sowohl des vaskulären Volumens (CBV) als auch der Permeabilität (P). Bei den Eisenoxiden verfälschen deren starke Suszeptibilitätseffekte die quantitative Bestimmung von Blutflussdaten, auch die Quantifizierung der Gefäßpermeabilität ist mit diesen Verbindungen mittels dynanischer MRT nicht möglich. / The aim of the studies was to develop new strategies for improving magnetic resonance imaging (MRI) of gliomas. In the majority of experiments the focus was on the characterization of experimental gliomas after administration of superparamagnetic iron oxides using MION (Monocrystalline Iron Oxide Nanoparticles) as a model compound. Experiments on the blood-brain barrier (BBB) demonstrated that iron oxides reach normal brain tissue beyond the BBB after their artificial, transient hyperosmotic opening by mannitol infusion. Upon opening of the BBB, iron oxides not only show intracellular uptake by astrocytes but are also phagocytosed in significantly higher amounts by activated microglia. Selective opening of the BBB by bradykinin injection into the internal carotid artery specifically increases the transport of iron oxides into the center of gliomas. Using an experimental glioma model, it was shown that intravenous administration of MION produces a characteristic ring enhancement of large tumors on MR images. Histologic studies of different types of gliomas (C6 and 9L) unequivocally demonstrated that iron oxide particles were phagocytosed by the glioma cells themselves. However, iron oxide uptake by glioma cells is significantly less pronounced compared to the phagocytosis of iron oxide particles by local microglial cells and blood macrophages. The incorporation of MION by tumor cells was confirmed in cell culture experiments using different glioma (C6, 9L) and carcinoma cell lines (LX-1). In vitro studies showed that conjugation of transferrin to an iron oxide compound enhanced intracellular uptake compared to unconjugated compounds. The imaging studies investigating tumor vascularization in experimental gliomas demonstrated that the combined use of a small-molecular and a large-molecular marker and simple image subtraction allow for determining vascular and interstitial volume fractions (VVF, IVF). Furthermore, injection of the blood pool markers MPEG-P1-Gd-DTPA and gadomer-17 alone likewise enables quantitative determination of both vascular volume (CBV) and permeability (P) in the animal model. Iron oxide particles, on the other hand, have pronounced susceptibility effects, which impair the quantitative determination of blood flow data. Nor do the particles allow for quantifying vascular permeability by dynamic MR imaging.
5

Proliferations- und Differenzierungspotential oviner und equiner mesenchymaler Stammzellen nach Markierung mit superparamagnetischen Eisenoxidpartikeln sowie deren Nachverfolgbarkeit mittels Magnetresonanztomographie

Veit, Christin 24 November 2011 (has links) (PDF)
Mesenchymale Stammzellen (MSC) werden bereits in klinischen Studien zur Behandlung verschiedener Krankheiten eingesetzt. Über deren Wirkmechanismus und Verbleib nach Applikation ist jedoch noch wenig bekannt. Die in vivo-Nachverfolgung markierter MSC mittels Magnetresonanztomographie stellt eine mögliche Methode zur Erlangung weiterer Erkenntnisse dar. Zu diesem Zweck können die MSC mittels superparamagnetischen Eisenoxid (SPIO)-Partikeln markiert werden. In dieser Arbeit wurden 3 verschiedene SPIO-Produkte zur Markierung oviner und equiner MSC verwendet: Endorem™, Resovist® und Molday ION Rhodamine B™. Die Produkte wurden hinsichtlich ihrer Einflüsse auf die biologischen Eigenschaften der MSC, ihrer Markierungseffizienz und –selektivität verglichen. Desweiteren wurde die produktspezifische magnetresonanztomographische Nachverfolgbarkeit der SPIO-markierten MSC untersucht. Weiterführendes Ziel war die Selektion des am besten geeigneten SPIO-Produktes für die Verwendung in einem in vivo-Großtierversuch zur magnetresonanztomographischen Nachverfolgung SPIO-markierter MSC nach Applikation in arthrotische Gelenke. Die MSC wurden dazu aus dem Knochenmark von je 5 gesunden Schafen und Pferden isoliert, bis zur Passage 4 (P4) expandiert und schließlich mit den verschiedenen SPIO-Produkten markiert. Unmarkierte MSC der gleichen Tiere dienten zur Kontrolle. Proliferationsvermögen sowie tripotentes Differenzierungspotential wurden in vitro untersucht. Zur Evaluierung von Markierungsselektivität und -effizienz der SPIO-Produkte wurden die MSC ab der P4 bis zur P7 wöchentlich passagiert. Ein semiquantitatives histologisches Auswertungssystem basierend auf der Preußisch Blau-Färbung sowie T2*w-GRE-Sequenzen an einem 0,5T-MRT-System wurden zur Evaluierung genutzt. Markierungsselektivität bezeichnete die intra- oder extrazelluläre Lokalisation der SPIO-Partikel. Markierungseffizienz beschrieb die Menge intrazellulär vorhandener SPIO-Partikel. Es wurde gezeigt, dass sich ovine und equine MSC mit allen 3 untersuchten SPIO-Produkten erfolgreich markieren ließen. Die Ergebnisse der in vitro-Untersuchungen ergaben keine Unterschiede zwischen SPIO-markierten und unmarkierten MSC hinsichtlich des Proliferationsvermögens, der adipogenen oder osteogenen Differenzierungsfähigkeit. Jedoch wurde eine deutliche Verminderung des chondrogenen Differenzierungspotentials SPIO-markierter MSC beobachtet, welche von der Menge intrazellulär vorhandener SPIO-Partikel und somit von der Markierungseffizienz abhängig war. Zum Zeitpunkt der initialen Markierung konnte nur Molday ION Rhodamine B™ eine selektive und effiziente Zellmarkierung gewährleisten. Mit Endorem™ konnte eine selektive, jedoch keine ausreichend effiziente Zellmarkierung erreicht werden. Resovist® dagegen bewirkte zwar eine effiziente, aber sehr unselektive initiale Zellmarkierung: Mittels Preußisch Blau-Färbung wurde gezeigt, dass große Mengen von SPIO-Partikeln nur extrazellulär anhefteten. Die 3 verschiedenen SPIO-Produkte führten weiterhin zu unterschiedlich starken hypointensen MRT-Signalen der markierten MSC, welche im Verlauf der 3-wöchigen Versuchsdauer bei allen 3 Produkten stetig abnahmen. Unmarkierte MSC waren isointens, also mittels MRT nicht darstellbar und daher nicht nachverfolgbar. Stets verursachten Resovist®-markierte MSC das stärkste hypointense MRT-Signal, gefolgt von Molday ION Rhodamine B™ und Endorem™. Resovist®-markierte MSC konnten mittels MRT bei beiden Spezies über den längsten Zeitraum nachverfolgt werden (ovine MSC bis 16 Tage, equine MSC bis 23 Tage nach Markierung). Aufgrund der exzellenten initialen Markierungseigenschaften (hohe Markierungsselektivität und –effizienz sowie gute Nachverfolgbarkeit) eignet sich Molday ION Rhodamine B™ besonders gut für die SPIO-Markierung von MSC zur Nachverfolgung mittels MRT. Molday ION Rhodamine B™ verspricht somit eine erfolgreiche Anwendung in einem in vivo-Versuch zur magnetresonsztomographischen Nachverfolgung von MSC nach Applikation in arthrotische Gelenke. / Mesenchymal stem cells (MSC) are already used in clinical studies for treatment of different diseases. However, their mechanism of action and fate after application are still not fully understood. In vivo tracking of labeled MSC via magnetic resonance imaging (MRI) is a possible method to achive further knowledge. For this purpose MSC can be labelled with superparamagnetic iron oxide (SPIO) particles. For this study 3 different SPIO products were employed for labelling of ovine and equine MSC: Endorem™, Resovist®,, and Molday ION Rhodamine B™. The products were compared in terms of their influence on biologic behaviour of the MSC, their labelling efficiency, and selectivity. Furthermore, product specific magnetic resonance traceability of SPIO labelled MSC was evaluated. Final aim was the selection of the most suitable SPIO product to be used in an in vivo large animal study employing MRI tracking of SPIO labelled MSC after application into osteoarthritic joints. MSC therefore, were isolated from bone marrow of each 5 healthy sheep and horses, expanded up to passage 4 (p4), and labelled by the different SPIO products. Unlabelled MSC from the same animals served as control. Proliferation potential and tripotent differentiation capacities were assessed in vitro. For evaluation of labelling selectivity and efficiency of the SPIO products MSC were passaged weekly from p4 up to p7. Semiquantitative histological scoring based on Prussian blue staining and images using T2*w GRE sequences in a 0.5T MRI system were used. Labelling selectivity describes the intra- or extracellular localisation of the SPIO particles. Labelling efficiency describes the amount of intracellular SPIO particles. It was shown that ovine and equine MSC could be successfully labelled by all 3 evaluated SPIO products. The results of the in vitro experiments did not show differences between labelled and unlabelled MSC in terms of proliferation potential, adipogenic or osteogenic differentiation capacities. However, an inhibited chondrogenic differentiation capacity of SPIO labelled MSC was observed, which was dependend on the amount of intracellular SPIO particles and therefore, also on labelling efficiency. At the time of initial labelling, only Molday ION Rhodamine B™ showed selective and efficient cell labelling. With Endorem™ selective, but not efficient cell labelling was achieved. Resovist®, in contrast, caused efficient but very unselective initial cell labelling: By Prussian blue staining it was shown that large amounts of SPIO particles were attached extracellularly. These 3 different SPIO products led to variable hypointense MRI signals of the labelled MSC which decreased in all 3 products during the 3 week study period. Unlabelled MSC were isointense, thus not visible, and therefore, not traceable using MRI. At every point of time, Resovist® labelled MSC resulted in the most hypointense MR signals, followed by Molday ION Rhodamine B™ and Endorem™. Resovist® labelled MSC were traced over the longest time span (ovine MSC until 16 days, equine MSC until 23 days post labelling). Due to excellent initial labelling properties (high labelling efficiency and selectivity, good traceability) Molday ION Rhodamine B™ suits best for SPIO labelling of MSC to be tracked by MRI. Molday ION Rhodamine B™ therefore, promises a successful use in an in vivo study using MRI for MSC tracking after application into osteoarthritic joints.
6

Proliferations- und Differenzierungspotential oviner und equiner mesenchymaler Stammzellen nach Markierung mit superparamagnetischen Eisenoxidpartikeln sowie deren Nachverfolgbarkeit mittels Magnetresonanztomographie

Veit, Christin 30 August 2011 (has links)
Mesenchymale Stammzellen (MSC) werden bereits in klinischen Studien zur Behandlung verschiedener Krankheiten eingesetzt. Über deren Wirkmechanismus und Verbleib nach Applikation ist jedoch noch wenig bekannt. Die in vivo-Nachverfolgung markierter MSC mittels Magnetresonanztomographie stellt eine mögliche Methode zur Erlangung weiterer Erkenntnisse dar. Zu diesem Zweck können die MSC mittels superparamagnetischen Eisenoxid (SPIO)-Partikeln markiert werden. In dieser Arbeit wurden 3 verschiedene SPIO-Produkte zur Markierung oviner und equiner MSC verwendet: Endorem™, Resovist® und Molday ION Rhodamine B™. Die Produkte wurden hinsichtlich ihrer Einflüsse auf die biologischen Eigenschaften der MSC, ihrer Markierungseffizienz und –selektivität verglichen. Desweiteren wurde die produktspezifische magnetresonanztomographische Nachverfolgbarkeit der SPIO-markierten MSC untersucht. Weiterführendes Ziel war die Selektion des am besten geeigneten SPIO-Produktes für die Verwendung in einem in vivo-Großtierversuch zur magnetresonanztomographischen Nachverfolgung SPIO-markierter MSC nach Applikation in arthrotische Gelenke. Die MSC wurden dazu aus dem Knochenmark von je 5 gesunden Schafen und Pferden isoliert, bis zur Passage 4 (P4) expandiert und schließlich mit den verschiedenen SPIO-Produkten markiert. Unmarkierte MSC der gleichen Tiere dienten zur Kontrolle. Proliferationsvermögen sowie tripotentes Differenzierungspotential wurden in vitro untersucht. Zur Evaluierung von Markierungsselektivität und -effizienz der SPIO-Produkte wurden die MSC ab der P4 bis zur P7 wöchentlich passagiert. Ein semiquantitatives histologisches Auswertungssystem basierend auf der Preußisch Blau-Färbung sowie T2*w-GRE-Sequenzen an einem 0,5T-MRT-System wurden zur Evaluierung genutzt. Markierungsselektivität bezeichnete die intra- oder extrazelluläre Lokalisation der SPIO-Partikel. Markierungseffizienz beschrieb die Menge intrazellulär vorhandener SPIO-Partikel. Es wurde gezeigt, dass sich ovine und equine MSC mit allen 3 untersuchten SPIO-Produkten erfolgreich markieren ließen. Die Ergebnisse der in vitro-Untersuchungen ergaben keine Unterschiede zwischen SPIO-markierten und unmarkierten MSC hinsichtlich des Proliferationsvermögens, der adipogenen oder osteogenen Differenzierungsfähigkeit. Jedoch wurde eine deutliche Verminderung des chondrogenen Differenzierungspotentials SPIO-markierter MSC beobachtet, welche von der Menge intrazellulär vorhandener SPIO-Partikel und somit von der Markierungseffizienz abhängig war. Zum Zeitpunkt der initialen Markierung konnte nur Molday ION Rhodamine B™ eine selektive und effiziente Zellmarkierung gewährleisten. Mit Endorem™ konnte eine selektive, jedoch keine ausreichend effiziente Zellmarkierung erreicht werden. Resovist® dagegen bewirkte zwar eine effiziente, aber sehr unselektive initiale Zellmarkierung: Mittels Preußisch Blau-Färbung wurde gezeigt, dass große Mengen von SPIO-Partikeln nur extrazellulär anhefteten. Die 3 verschiedenen SPIO-Produkte führten weiterhin zu unterschiedlich starken hypointensen MRT-Signalen der markierten MSC, welche im Verlauf der 3-wöchigen Versuchsdauer bei allen 3 Produkten stetig abnahmen. Unmarkierte MSC waren isointens, also mittels MRT nicht darstellbar und daher nicht nachverfolgbar. Stets verursachten Resovist®-markierte MSC das stärkste hypointense MRT-Signal, gefolgt von Molday ION Rhodamine B™ und Endorem™. Resovist®-markierte MSC konnten mittels MRT bei beiden Spezies über den längsten Zeitraum nachverfolgt werden (ovine MSC bis 16 Tage, equine MSC bis 23 Tage nach Markierung). Aufgrund der exzellenten initialen Markierungseigenschaften (hohe Markierungsselektivität und –effizienz sowie gute Nachverfolgbarkeit) eignet sich Molday ION Rhodamine B™ besonders gut für die SPIO-Markierung von MSC zur Nachverfolgung mittels MRT. Molday ION Rhodamine B™ verspricht somit eine erfolgreiche Anwendung in einem in vivo-Versuch zur magnetresonsztomographischen Nachverfolgung von MSC nach Applikation in arthrotische Gelenke. / Mesenchymal stem cells (MSC) are already used in clinical studies for treatment of different diseases. However, their mechanism of action and fate after application are still not fully understood. In vivo tracking of labeled MSC via magnetic resonance imaging (MRI) is a possible method to achive further knowledge. For this purpose MSC can be labelled with superparamagnetic iron oxide (SPIO) particles. For this study 3 different SPIO products were employed for labelling of ovine and equine MSC: Endorem™, Resovist®,, and Molday ION Rhodamine B™. The products were compared in terms of their influence on biologic behaviour of the MSC, their labelling efficiency, and selectivity. Furthermore, product specific magnetic resonance traceability of SPIO labelled MSC was evaluated. Final aim was the selection of the most suitable SPIO product to be used in an in vivo large animal study employing MRI tracking of SPIO labelled MSC after application into osteoarthritic joints. MSC therefore, were isolated from bone marrow of each 5 healthy sheep and horses, expanded up to passage 4 (p4), and labelled by the different SPIO products. Unlabelled MSC from the same animals served as control. Proliferation potential and tripotent differentiation capacities were assessed in vitro. For evaluation of labelling selectivity and efficiency of the SPIO products MSC were passaged weekly from p4 up to p7. Semiquantitative histological scoring based on Prussian blue staining and images using T2*w GRE sequences in a 0.5T MRI system were used. Labelling selectivity describes the intra- or extracellular localisation of the SPIO particles. Labelling efficiency describes the amount of intracellular SPIO particles. It was shown that ovine and equine MSC could be successfully labelled by all 3 evaluated SPIO products. The results of the in vitro experiments did not show differences between labelled and unlabelled MSC in terms of proliferation potential, adipogenic or osteogenic differentiation capacities. However, an inhibited chondrogenic differentiation capacity of SPIO labelled MSC was observed, which was dependend on the amount of intracellular SPIO particles and therefore, also on labelling efficiency. At the time of initial labelling, only Molday ION Rhodamine B™ showed selective and efficient cell labelling. With Endorem™ selective, but not efficient cell labelling was achieved. Resovist®, in contrast, caused efficient but very unselective initial cell labelling: By Prussian blue staining it was shown that large amounts of SPIO particles were attached extracellularly. These 3 different SPIO products led to variable hypointense MRI signals of the labelled MSC which decreased in all 3 products during the 3 week study period. Unlabelled MSC were isointense, thus not visible, and therefore, not traceable using MRI. At every point of time, Resovist® labelled MSC resulted in the most hypointense MR signals, followed by Molday ION Rhodamine B™ and Endorem™. Resovist® labelled MSC were traced over the longest time span (ovine MSC until 16 days, equine MSC until 23 days post labelling). Due to excellent initial labelling properties (high labelling efficiency and selectivity, good traceability) Molday ION Rhodamine B™ suits best for SPIO labelling of MSC to be tracked by MRI. Molday ION Rhodamine B™ therefore, promises a successful use in an in vivo study using MRI for MSC tracking after application into osteoarthritic joints.

Page generated in 0.1538 seconds