Spelling suggestions: "subject:"superpixels"" "subject:"voxels""
1 |
Supervoxel Based Object Detection and Seafloor Segmentation Using Novel 3d Side-Scan SonarPatel, Kushal Girishkumar 12 November 2021 (has links)
Object detection and seafloor segmentation for conventional 2D side-scan sonar imagery is a well-investigated problem. However, due to recent advances in sensing technology, the side-scan sonar now produces a true 3D point cloud representation of the seafloor embedded with echo intensity. This creates a need to develop algorithms to process the incoming 3D data for applications such as object detection and segmentation, and an opportunity to leverage advances in 3D point cloud processing developed for terrestrial applications using optical sensors (e.g. LiDAR). A bottleneck in deploying 3D side-scan sonar sensors for online applications is attributed to the complexity in handling large amounts of data which requires higher memory for storing and processing data on embedded computers. The present research aims to improve data processing capabilities on-board autonomous underwater vehicles (AUVs). A supervoxel-based framework for over-segmentation and object detection is proposed which reduces a dense point cloud into clusters of similar points in a neighborhood. Supervoxels extracted from the point cloud are then described using feature vectors which are computed using geometry, echo intensity and depth attributes of the constituent points. Unsupervised density based clustering is applied on the feature space to detect objects which appear as outliers. / Master of Science / Acoustic imaging using side-scan sonar sensors has proven to be useful for tasks like seafloor mapping, mine countermeasures and habitat mapping. Due to advancements in sensing technology, a novel type of side-scan sonar sensor is developed which provides true 3D representation of the seafloor along with the echo intensity image. To improve the usability of the novel sensors on-board the carrying vehicles, efficient algorithms needs to be developed. In underwater robotics, limited computational and data storage capabilities are available which poses additional challenges in online perception applications like object detection and segmentation. In this project, I investigate a clustering based approach followed by an unsupervised machine learning method to perform detection of objects on the seafloor using the novel side scan sonar. I also show the usability of the approach for performing segmentation of the seafloor.
|
2 |
Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness / Reparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementesTavares, Anderson Carlos Moreira 02 June 2017 (has links)
Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions. / Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automaticamente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, reduzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa (RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo denominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação é gerado e o problema da reparação interativa pode então ser resolvido através da adição de novas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connectedness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos também nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o potencial destas soluções.
|
3 |
Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness / Reparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementesAnderson Carlos Moreira Tavares 02 June 2017 (has links)
Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions. / Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automaticamente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, reduzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa (RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo denominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação é gerado e o problema da reparação interativa pode então ser resolvido através da adição de novas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connectedness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos também nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o potencial destas soluções.
|
4 |
Semantic segmentation of terrain and road terrain for advanced driver assistance systemsGheorghe, I. V. January 2015 (has links)
Modern automobiles and particularly those with off-road lineage possess subsystems that can be configured to better negotiate certain terrain types. Different terrain classes amount to different adherence (or surface grip) and compressibility properties that impact vehicle ma-noeuvrability and should therefore incur a tailored throttle response, suspension stiffness and so on. This thesis explores prospective terrain recognition for an anticipating terrain response driver assistance system. Recognition of terrain and road terrain is cast as a semantic segmen-tation task whereby forward driving images or point clouds are pre-segmented into atomic units and subsequently classified. Terrain classes are typically of amorphous spatial extent con-taining homogenous or granularly repetitive patterns. For this reason, colour and texture ap-pearance is the saliency of choice for monocular vision. In this work, colour, texture and sur-face saliency of atomic units are obtained with a bag-of-features approach. Five terrain classes are considered, namely grass, dirt, gravel, shrubs and tarmac. Since colour can be ambiguous among terrain classes such as dirt and gravel, several texture flavours are explored with scalar and structured output learning in a bid to devise an appropriate visual terrain saliency and predictor combination. Texture variants are obtained using local binary patters (LBP), filter responses (or textons) and dense key-point descriptors with daisy. Learning algorithms tested include support vector machine (SVM), random forest (RF) and logistic regression (LR) as scalar predictors while a conditional random field (CRF) is used for structured output learning. The latter encourages smooth labelling by incorporating the prior knowledge that neighbouring segments with similar saliency are likely segments of the same class. Once a suitable texture representation is devised the attention is shifted from monocular vision to stereo vision. Sur-face saliency from reconstructed point clouds can be used to enhance terrain recognition. Pre-vious superpixels span corresponding supervoxels in real world coordinates and two surface saliency variants are proposed and tested with all predictors: one using the height coordinates of point clouds and the other using fast point feature histograms (FPFH). Upon realisation that road recognition and terrain recognition can be assumed as equivalent problems in urban en-vironments, the top most accurate models consisting of CRFs are augmented with composi-tional high order pattern potentials (CHOPP). This leads to models that are able to strike a good balance between smooth local labelling and global road shape. For urban environments the label set is restricted to road and non-road (or equivalently tarmac and non-tarmac). Ex-periments are conducted using a proprietary terrain dataset and a public road evaluation da-taset.
|
Page generated in 0.0399 seconds