• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 29
  • 16
  • 5
  • Tagged with
  • 94
  • 62
  • 53
  • 31
  • 30
  • 30
  • 30
  • 25
  • 23
  • 22
  • 21
  • 18
  • 17
  • 17
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Critical current in ferromagnet, superconductor hybrid structures

Meindl, Wilfried January 2007 (has links)
Regensburg, Univ., Diss., 2008.
22

Untersuchungen zum Wachstum dünner Schichten organischer Metalle aus (BEDT-TTF)2I3

Niebling, Ulf. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Stuttgart. / Erscheinungsjahr an der Haupttitelstelle: 2001.
23

Towards ferromagnet/superconductor junctions on graphene / Ein Weg zu Ferromagnet/Supraleiter Grenzflächen auf Graphen

Pakkayil, Shijin Babu January 2017 (has links) (PDF)
This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator. / Diese Arbeit berichtet über die erfolgreiche Herstellung und Charakterisierung eines Ferromagnet-Supraleiter (F/S)-Kontaktes. Die Arbeit schlägt eine Herstellungsmetode vor, um F/S-Kontake auf Graphen zu erstellen, welche ALD wachsendes Al2O3 als Tunnelbarriere für die ferromagnetischen Kontakte verwendet. Messungen an F/G/S/G deuten darauf hin, dass durch Injektion eines spinpolarisierten Stroms in den Supraleiter ein Spinungleichgewicht in der Quasiteilchendichte der Zustände des Supraleiters erzeugt wird, welche dann durch die Graphenkanäle diffundieren. Die beobachteten charakteristischen Kurven sind vergleichbar mit solchen, über die bereits in metallischen Ferromagnet/Supraleiter-Kontakten berichtet wurde, in denen das Spinungleichgewicht durch die Zeemann Aufspaltung erzeugt wird. Weitere Messungen zeigen auch, dass die Kurven ihre charakteristische Form verlieren, wenn die Temperatur über die kritische Temperatur erhöht wird oder das äußere Magnetfeld größer als das kritische Magnetfeld (HC) des supraleitenden Kontakts ist. Um die Existenz des Spinungleichgewichts in Ferromaget/Supraleiter-Kontakten auf Graphen schlussfolgernd und zweifelsfrei zu beweisen, wurden mehrere Proben hergestellt und bevorzugt in einem Mischungskryostaten charakterisiert.
24

Andreev-Streuung, Josephson-Bloch-Oszillationen und Zener-Tunneln in Heterokontakten aus Normal- und Supraleitern / Andreev scattering, Josephson-Bloch oscillations, and Zener tunneling in heterojunctions of normal conductors and superconductors

Jacobs, Arne January 2003 (has links) (PDF)
Die vorliegende Arbeit beleuchtet verschiedene Aspekte des Ladungstransports in Heterokontakten aus Normal- (N) und Supraleitern (S) im Rahmen des Bogoliubov-de Gennes-Formalismus. Dabei ist der bestimmende Prozeß die Andreev-Streuung: die Streuung von Elektronen in Löcher, bzw. umgekehrt, an räumlichen Variationen des supraleitenden Paarpotentials unter Erzeugung, bzw. Vernichtung, eines Cooperpaares und damit der Induktion eines Suprastroms. Befindet sich ein Supraleiter zwischen zwei normalleitenden Bereichen, so wandelt sich der an der einen NS-Phasengrenze durch Andreev-Streuung induzierte Suprastrom an der anderen NS-Phasengrenze wieder in einen durch Quasiteilchen getragenen Strom um. Diese Umwandlung erfolgt durch den Einfall eines Quasiteilchens, dessen Charakter dem des auf der gegenüberliegenden Seite des Supraleiters einfallenden Quasiteilchens entgegengerichtet ist, wie anhand von Wellenpaket-Rechnungen explizit gezeigt wird. Ersetzt man den Supraleiter durch einen mesoskopischen SNS-Kontakt, ist die Vielteilchen-Konfiguration in der mittleren N-Schicht phasenkohärent und daher verschieden von den unkorrelierten Quasiteilchen-Anregungen, die die verschobene Fermi-Kugel in den normalleitenden Zuleitungen bilden. Die Josephson-Ströme, die durch die Quasiteilchen in der mittleren N-Schicht getragen werden, werden unter zwei verschiedenen Modellannahmen berechnet: Im einen Fall werden nur Streuzustände als Startzustände betrachtet, im anderen, bei gleichzeitiger Berücksichtigung eines normalstreuenden Potentials, nur gebundene Zustände. Der SNS-Kontakt wird durch eine supraleitend/halbleitende Heterostruktur modelliert, deren Parameter-Werte sich an den Experimenten der Gruppe von Herbert Kroemer in Santa Barbara orientieren. Wenn die supraleitenden Bereiche ohne normalleitende Zuleitungen direkt mit einem Reservoir von Cooperpaaren verbunden sind, fallen nur Quasiteilchen in Streuzuständen aus den supraleitenden Bänken auf die NS-Phasengrenzen des Kontaktes ein. Mit den Normalleiter-Wellenfunktionen, die sich bei Anlegen einer Spannung V aus diesen Startzuständen entwickeln, wird die Josephson-Wechselstromdichte in der Mitte der N-Schicht bei der Temperatur T = 2,2 K berechnet. Die Stromdichte weist spannungsabhängige Oszillationen in der Zeit auf, deren Periode das Inverse der Josephson-Frequenz ist. Alle Stromdichten zeigen bei kleinen Spannungen einen steilen Anstieg ihres Betrages, der durch Quasiteilchen zustandekommt, die durch das elektrische Feld aus dem Kondensat kommend in den Paarpotentialtopf hineingezogen werden und dort bei kleinen Spannungen eine große Zahl von Andreev-Streuungen erfahren, wobei sie bei jedem Elektron-Loch-Zyklus die Ladung 2e durch die N-Schicht transportieren. Im zweiten betrachteten Fall wird unter Berücksichtigung von Normalstreuung der Gesamtzustand des Systems zu jedem Zeitpunkt durch eine Superposition von gebundenen Zuständen ausgedrückt. Die Energie dieser gebundenen Zustände ist abhängig von der Phasendifferenz Phi zwischen den supraleitenden Schichten. Für Werte der Phasendifferenz von ganzzahligen Vielfachen von Pi sind Zustände entgegengerichteter Impulse paarweise entartet. Das normalstreuende Potential mischt diese Zustände, hebt ihre Entartung auf und führt zu Energielücken: Es bilden sich Energiebänder im Phi-Raum, die formal den Bloch-Bändern von Kristallen im Wellenzahlraum entsprechen. Wird eine äußere Spannung angelegt, so ändert sich die Phasendifferenz gemäß der Josephson-Gleichung mit der Zeit und die Quasiteilchen oszillieren in ihren jeweiligen Phi-Bloch-Bändern: Diese Josephson-Bloch-Oszillationen ergeben den "normalen" Josephson-Wechselstrom, der zwischen positiven und negativen Werten schwingt und im zeitlichen Mittel Null ist. Zusätzlich können die Quasiteilchen durch Zener-Tunneln --- wie der analoge Prozeß in der Halbleiterphysik genannt wird --- in höhere Bänder übergehen. Während sich die Richtung der Josephson-Stromdichte zu den Zeiten minimaler Energielücke umkehrt, hat die Zener-Tunnel-Stromdichte nach einem Tunnel-Prozeß das gleiche Vorzeichen, das die Josephson-Stromdichte vor dem Tunnel-Prozeß hatte. Wenn die angelegte Spannung hinreichend groß ist und genügend Quasiteilchen in das höhere Band tunneln, überkompensiert die Zener-Tunnel-Stromdichte in der Halbperiode nach dem Tunnel-Prozeß die Josephson-Stromdichte, und die Gesamtstromdichte schwingt wieder in dieselbe Richtung wie vor dem Zener-Tunneln. Somit hat sich gewissermaßen die Periode halbiert: Die Gesamtstromdichte schwingt mit der doppelten Josephson-Frequenz. Allen untersuchten Aspekten des Ladungstransports durch Heterokontakte aus Normal- und Supraleitern ist eines gemein: Der für ihr Verständnis fundamentale Prozeß ist die Andreev-Streuung. / The present work covers various aspects of charge transport in heterojunctions consisting of normal conductors (N) and superconductors (S) within the framework of the Bogoliubov-de Gennes-Formalism. The determining process is Andreev scattering: the scattering of electrons into holes, or vice versa, by spatial variations of the superconducting pair potential. This scattering creates or destroys Cooper pairs, thereby inducing a supercurrent. If there is a superconductor between two normal conducting regions, the supercurrent induced by Andreev scattering in one NS interface changes into a quasiparticle current in the other NS interface. This conversion results from the incidence of a quasiparticle having a character opposite to that of the quasiparticle impinging on the opposite side of the superconductor, as is shown explicitly on the basis of wave packet calculations. If the superconductor is replaced by a mesoscopic SNS junction, the many-body configuration in the central N layer is a phase-coherent one and thus different from the uncorrelated quasiparticle excitations forming the shifted Fermi sphere in the normal current leads. The Josephson currents, that are carried by the quasiparticles in the central N layer, are calculated using two different model assumptions: In one case, only scattering states are regarded as initial states, in the other case, while simultaneously taking into account a normal scattering potential, only bound states. The SNS junction is modelled by a superconducting/semiconducting heterostructure, the parameter values of which are geared to the experiments of the group of Herbert Kroemer in Santa Barbara. If the superconducting region is directly connected to a reservoir of Cooper pairs without normal current leads, only quasiparticles in scattering states are incident from the superconducting banks onto the NS interfaces of the junction. The alternating Josephson current is calculated in the center of the N layer at temperature T = 2.2 K, using the N layer wavefunctions that evolve from the initial states when a voltage V is switched on. The current density shows voltage-dependent current oscillations in time, their period is the inverse of the Josephson frequency. All current densities show a steep increase of their magnitude with small voltages, brought about by quasiparticles originating from the condensate and being pulled by the electric field into the pair potential well, where they suffer a great number of Andreev reflections at small voltages while carrying a charge of 2e through the N layer with every electron-hole-cycle. In the second case the overall state of the system, taking into account normal scattering, is expressed at every instant of time as a superposition of bound states. The energy of these bound states depends on the phase difference Phi between the superconducting layers. For phase differences of integer multiples of Pi, states with opposite direction of momentum are pairwise degenerate. The normal scattering potential mixes these states, removes their degenaracy and leads to energy gaps: energy bands form in Phi-space, formally corresponding to the Bloch bands of crystals in wavenumber space. If an external voltage is switched on, the phase difference changes in time according to the Josephson equation, and the quasiparticles oscillate in their respective Phi-Bloch bands: These Josephson-Bloch oscillations yield the "normal" alternating Josephson current which swings between positive and negative values and equals zero in its time average. Additionally, quasiparticles can make transitions into higher bands via Zener tunneling --- as the analogous process in semiconductor physics is called. While the direction of the Josephson current density changes at the times when the energy gap is minimal, the Zener-tunneling current density possesses the same sign after a tunneling process as the Josephson current density had before the tunneling process. When the applied voltage is so high that many quasiparticles tunnel into the next higher band, and the Zener-tunneling current density overcompensates the Josephson current density in the half-period after the tunneling process, the overall current density swings back again into the same direction as before the Zener tunneling. Thus the period has effectively bisected: The overall current density oscillates with twice the Josephson frequency. All analysed aspects of charge transport through heterojunctions of normal conductors and superconductors have one thing in common: the fundamental process for their understanding is Andreev scattering.
25

HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport / HgTe ummantelte CdTe Nanodrähte: Ein nieder-dimensionaler Topologischer Isolator vom Kristallwachstum zum Quantentransport

Kessel, Maximilian January 2016 (has links) (PDF)
A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 % along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case. / Topologische Isolatoren (TI) sind ein faszinierendes Forschungsfeld der Festkörperphysik. Im Inneren sind diese Materialien isolierend, am Rand zeigen sich jedoch topologisch geschützte, leitfähige Oberflächen-Zustände. Ihre lineare Energiedispersion und die Kopplung des Elektronenspins an die Bewegungsrichtung ermöglichen die Untersuchung von Teilchen, die sich als Dirac-Fermionen beschreiben lassen. Für Nanodrähte, als Vertreter mesoskopischer Strukturen, spielen die Eigenschaften der Oberfläche eine größere Rolle, als für Strukturen mit makroskopischem Volumen. Ihr geringer Umfang beschränkt durch zusätzliche periodische Randbedingungen die erlaubten elektronischen Zustände. Durch ein externes Magnetfeld lassen sich TI-Nanodrähte vom trivialen in den helikalen Zustand überführen. Bringt man einen solchen Draht in direkten Kontakt mit einem Supraleiter, so werden Quasiteilchen vorhergesagt, die sich wie Majorana-Fermionen verhalten sollen. Zur Untersuchung dieser Phänomene sind zunächst entscheidende technologische Hürden zu überwinden. Verschiedene TI sind derzeit bekannt. HgTe ist einer von ihnen und zeichnet sich bei tiefen Temperaturen durch eine hohe Beweglichkeit der Oberflächen-Elektronen und gleichzeitig einer geringen Leitfähigkeit im Volumen aus. Die bisherigen Untersuchungen in diesem Materialsystem beschränken sich auf zwei- und dreidimensionale Strukturen. In dieser Arbeit wurde ein Verfahren zur Herstellung von quasi eindimensionalen TI-Nanodrähten entwickelt. Mittels vapor-liquid-solid Methode gewachsene CdTe Nanokristallite werden epitaktisch mit HgTe umwachsen. Die hergestellten Heterostrukturen werden mit Beugungsexperimenten charakterisiert, um den Einfluss der Wachstumsparameter wie Temperatur und Teilchenstrom auf die Qualität der Proben zu bestimmen und diese zu verbessern. In dieser Arbeit wird zum ersten mal eine Rekonstruktion der Oberflächenatome von Nanodrähten beschrieben. Für den Rückschluss auf die atomare Konfiguration mittels Elektronenbeugung müssen die einzelnen Kristallite eine hohe Selbstähnlichkeit aufweisen. Wie Bilder in atomarer Auflösung und hochaufgelöste Röntgenbeugung zeigen, werden einkristalline und verspannte CdTe-HgTe Strukturen erzeugt. Diese sollten die typischen TI Eigenschaften haben. Zur weiteren Untersuchung wurden Verfahren für die Manipulation und exakte Ausrichtung der Nanodrähte, sowie für die Kontaktierung mit verschiedenen Metallen entwickelt. Die blanken CdTe Nanodraht-Kerne selbst sind wie erwartet isolierend, mit HgTe umwachsene Proben jedoch leiten einen elektrischen Strom. Die aktuelle Forschung beschäftigt sich nun intensiv mit dem Transport von Ladungs-trägern durch diese Nanodrähte. Dazu wird die Leitfähigkeit der Proben unter anderem bei tiefen Temperaturen und in Abhängigkeit äußerer elektrostatischer und magnetischer Felder bestimmt. Es werden verschiedene Effekte beobachtet. Universelle Fluktuationen des gemessenen Widerstandes, als ein Beispiel, resultieren aus einer Veränderung der geometrischen Phase der Ladungsträger. Dieser Effekt deutet auf elastische Rückstreuung der Ladungsträger in den HgTe Nanodrähten hin. Die Beobachtung kohärenter Transportphänomene erlaubt den Rückschluss, dass inelastische Streuprozesse bei tiefen Temperaturen kaum eine Rolle spielen. Für Drähte mit supraleitenden Kontakten können induzierte Supraleitung und multiple Andreev-Reflektionen beobachtet werden. Zusammen mit dem beschriebenen excess current ist dies ein klares Zeichen für einen guten elektrischen Kontakt zwischen TI und Supraleiter. Zusätzlich beobachten wir eine Signatur nahe der Kante der Energielücke des Supraleiters, die eventuell durch pairing an der Grenzfläche zu erklären ist. Für die Verbindung von Spin-Bahn-Kopplung des TI und der Cooper-Paare des konventionellen Supraleiters wird die Entstehung eines unkonventionellen Supraleiters vorhergesagt. Dies ist ein weiteres interessantes Feld der modernen Festkörperphysik und Gegenstand aktueller Forschung. Besonders bemerkenswert ist in diesem Zusammenhang, dass der metallische Tropfen, welcher ursprünglich das Nanodraht-Wachstum katalysiert hat, bei tiefen Temperaturen supraleitend wird. Der in dieser Arbeit vorgestellte selbst-organisierte Wachstumsprozess resultiert in einer sauberen Grenzfläche zwischen TI und Supraleiter. Zur Untersuchung der Effekte an dieser Grenzfläche muss nicht zwingend in einem separaten Schritt ein supraleitender Kontakt aufgebracht werden. Die in dieser Arbeit vorgestellten Methoden und Erkenntnisse sind die Grundlage für die Realisierung von Experimenten, die geeignet wären, die erwarteten Majorana-Zustände in TI-Nanodrähten nachzuweisen.
26

Nanoteilchen als Ausgangspunkt für künstliche Pinningzentren in Supraleitern

Oettinger, Marcus, January 2007 (has links)
Ulm, Univ., Diss., 2007.
27

Fermi surface studies on the organic superconductor Kappa-(BEDT-TTF) 2 Cu[N[CN] 2 ]Br and on the alkanline earth subnitride NaBa 3 Nby means of magneto-quantum oscillations

Weiß, Herbert Dieter. January 2001 (has links)
Konstanz, Univ., Diss., 2001.
28

Mikrowellenabsorption zur Leitfähigkeitsbestimmung von Supraleitern

Nebendahl, Bernd, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
29

De-Haas-van-Alphen-Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate January 2010 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2010
30

Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern / Scanning Tunneling Microscopy and Spectroscopy Study of Superconductors and Topological Superconductors

Wilfert, Stefan January 2019 (has links) (PDF)
Quantencomputer können manche Probleme deutlich effizienter lösen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekohärenzzeit, weshalb die Lebenszeit der Quantenzustände einen limitierenden Faktor darstellt. Topologisch geschützte Anregungen, wie Majorana-Fermionen, könnten hingegen dieses Hindernis überwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Phänomen aufweisen. Daher ist das Verständnis der elektronischen Eigenschaften für solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfläche und topologischem Oberflächenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern überprüft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgeschützten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgelöste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi$_{2}$Se$_{2}$ untersucht, der eine vergleichbare Übergangstemperatur besitzt. Anhand diesem werden die gängigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie für supraleitende Proben vorgestellt und die Leistungsfähigkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein $s$-Wellencharakter des Paarungsmechanismus sowie die Formation eines für Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ begutachtet, für die eindeutig ein TSS bestätigt wird. Allerdings weisen beide Materialien keine Oberflächensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfläche vom Volumen durch Bandverbiegung zu erklären ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe führen jedoch zu supraleitenden Spitzen, die wesentlich erhöhte Werte für die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), für den der Reinigungsprozess erläutert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes nötig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberflächenresonanz zum Vorschein bringen. Hochaufgelöste Messungen lassen eine durch die BCS-Theorie gut repräsentierte Struktur der supraleitenden Energielücke erkennen. Magnetfeldabhängige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zukünftig als Ausgang für das Wachstum von topologischen Supraleitern herangezogen werden. / Quantum computers are able to solve certain problems a lot more efficiently than classical processors. However, current realizations lack of a suitable decoherence \mbox{time} resulting in insufficient lifetimes of quantum states as the major limiting factor. Topological protected excitations such as Majorana fermions living in topological superconductors show great potential to overcome this obstacle. Since there exists only a small amount of materials with these characteristics the understanding of the electronic properties of such compounds is very important. In this thesis, the coexistence of a topological surface state (TSS) and superconductivity at the sample's surface of potential topological superconductors is studied. These two conditions must be fulfilled for the formation of topological superconductivity in time reversal invariant systems. For this purpose, Landau level spectroscopy and quasiparticle interference are carried out on Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ to verify the TSS at the Fermi energy. Transport measurements showed superconductivity in the bulk for both materials. High resolution spectroscopy experiments at the Fermi energy are performed to analyze the superconductivity. For interpretation of these data, we study the Ni-based heavy fermion superconductor TlNi$_{2}$Se$_{2}$ with a comparable transition temperature to the above mentioned compounds. In this context, the common measuring methods of scanning tunneling microscopy and spectroscopy for superconducting samples are presented and the performance capability of our experimental setup is demonstrated. In consistence with the literature, we find an $s$-wave pairing mechanism and the formation of an Abrikosov lattice typical for type~II superconductors in small external fields. The following part of this work is the investigation of the potential topological superconductors Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ that clearly confirm the presence of a TSS on both materials. No surface superconductivity can be discovered on both compounds presumably caused due to band bending thus leading to a decoupling of the surface from the bulk. However, unintentional collisions between tip and sample lead to the formation of superconducting tips with considerably higher values for the critical temperature and field as compared to the bulk results. In the last paragraph, the superconducting substrate Nb(110) is characterized. Firstly, a cleaning procedure including flashing the sample to temperatures close to the melting point is necessary to remove the oxygen reconstruction that has been formed at ambient conditions. A surface resonance is found upon analyzing the electronic properties. High resolution spectroscopy measurements lead to a superconducting gap in good agreement with the BCS theory. Additionally, magnetic field dependent experiments show an anisotropy of the pair potential accordingly to the crystal symmetry. These findings confirm that Nb(110) shows great potential as a superconducting substrate for growing topological superconductors in the future.

Page generated in 0.0947 seconds