• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thymic function and rejection in heart transplantation / Fonction thymique et rejet en transplantation cardiaque

Sannier, Aurélie 28 November 2017 (has links)
L’induction de tolérance est le principal objectif de la recherche en transplantation car elle permettrait de prévenir le rejet et d’éliminer la morbidité secondaire à l’immunosuppression prolongée. Dans ce cadre, le thymus pourrait être un organe crucial car il permet d’établir la taille et la diversité de la population lymphocytaire T et est responsable de la génération d’une tolérance immunitaire en façonnant le répertoire T par le processus de sélection négative. En plus des lymphocytes T, les cellules dendritiques (CDs), épithéliales et les lymphocytes B jouent un rôle important dans le thymus, en tant que cellules présentatrices d’antigènes (CPAs). Ainsi, le thymus est un organe hautement dynamique, à l’interface entre système immunitaire central et périphérique. Alors qu’il débute son involution avant l’âge adulte, une fonction thymique persiste toute la vie, avec un grand degré de variabilité interindividuelle.Dans le cadre de la transplantation cardiaque, les patients sont souvent soumis à un traitement lymphodéplétant par sérum anti-lymphocytaire (SAL), afin de réduire le risque de rejet, mais avec un potentiel risque iatrogénique pour le thymus. De plus, ces patients subissent une chirurgie au cours de laquelle les reliquats thymiques pourraient être partiellement réséqués.Sachant que la fonction thymique varie entre les individus et qu’une régénération thymique est possible dans les suites d’une lymphodéplétion, nous avons émis l’hypothèse que la transplantation cardiaque serait un contexte associé à une réactivation de la fonction thymique et qu’une relation pourrait exister entre cette fonction et la survenue d’un rejet.Tout d’abord, j’ai analysé l’influence des thérapies d’induction sur la cinétique de repopulation lymphocytaire. J’ai étudié les sous-populations lymphocytaires avant et peu après la transplantation chez des patients recevant une induction par basiliximab (antagoniste du récepteur de l’IL-2) ou SAL et ai montré que le SAL induisait une sénescence immunologique précoce. Cette première partie a permis la caractérisation des modifications immunologiques induites par le SAL avant d’analyser les populations lymphocytaires chez les patients transplantés traités par le SAL en fonction de la survenue d’un rejet. Dans ce cadre,j’ai ensuite démontré qu’une thymopoïèse plus intense était observée chez les patients développant un rejet humoral (RH), par l’étude des cercles d’excision du récepteur des cellules T (TREC), la quantification des émigrants thymiques récents (ETR) et une évaluation par imagerie dans un sous-groupe de patients. Ce résultat était plutôt inattendu sachant que le thymus est largement décrit comme un organe tolérogène pour les réponses alloimmunes T.Afin de clarifier le rôle du thymus dans la réponse humorale alloimmune, nous avons mis en place un modèle murin d’allotransplantation aortique (AA) associé ou non à une thymectomie prophylactique. Nous avons démontré que la thymectomie réduisait la réponse médiée par les anticorps, avec une expansion concomitante des lymphocytes T régulateurs. En conclusion, ces données suggèrent que la suractivation du thymus pourrait promouvoir une réponse alloimmune humorale, un résultat inattendu car d’autres travaux indiquent que le thymus est plutôt un inducteur de tolérance. Le thymus pourrait avoir un double rôle, en promouvant la tolérance lymphocytaire T mais aussi, dans un contexte de suractivation, la survenue du RH par un mécanisme restant à élucider. D’autres études doivent être menées pour mieux comprendre l’interaction entre les différents contingents cellulaires thymiques et la modulation des fonctions du thymus au cours de la vie et dans les situations de réactivation du thymus. / The induction of tolerance remains the main goal of transplantation research because it would prevent the development of rejection and eliminate the morbidity associated with prolonged immunosuppression. In this setting, the thymus could be a crucial organ because it establishes the size and diversity of the naïve T-cell pool and is responsible for the generation of immunetolerance by shaping the T-cell repertoire through the process of negative selection. Inaddition to T lymphocytes, dendritic cells (DCs), epithelial cells and B lymphocytes play animportant role in the thymus as antigen-presenting cells (APCs). Therefore, it is a highlydynamic organ, functioning at the interface between the central and peripheral immunesystem. While it undergoes involution before adulthood, thymic function persists throughout life, though with a high degree of interindividual variability. In the field of heart transplantation, patients are often subjected to lymphodepleting therapy by antithymocyteglobulin (ATG), which is expected to reduce the risk of acute rejection but potentiallyr epresents a main contributor to iatrogenic thymic injury. Additionally, heart transplant (HTx)patients under go surgery during which the thymic remnants may be at least partially removedor surgically injured. Considering the variation in thymic function between individuals and possibility of thymic regeneration following lymphodepletion, we hypothesized that heart transplantation could be a clinical situation associated with a reactivation of thymic functionand that there could be a relationship between this function and the onset of rejection. First, I analyzed the influence of induction therapies on the repopulation kinetics of lymphocytes. I studied lymphocyte subpopulations in pre- and early post-transplant period ina cohort of patients receiving either basiliximab (IL-2 receptor antagonist) or ATG inductionand showed that ATG induced accelerated immunological senescence. This first part enabled the characterization of immune modifications induced by ATG before analysis of there partition of lymphocyte subpopulations in ATG-treated HTx patients classified according rejection on set. In this setting, I next demonstrated the occurrence of more efficient thymopoiesis in HTx patients who developed antibody-mediated rejection (AMR), by assessments of blood T cell receptor excision circle (TREC) levels, quantification of circulating recent thymic emigrants (RTEs) and imaging evaluation in a subset of patients. This finding was rather unexpected, as the thymus is widely described as a tolerogenic organfor alloimmune T cell responses. To clarify the role of the thymus in the humoral alloimmune response, we used a murine model of aortic allotransplantation (AA) associated or not withprophylactic thymectomy. We demonstrated that thymectomy decreased antibody-mediated responses, with a concomitant expansion of the regulatory T cell compartment. In conclusion, my data suggest that over-activation of the thymus could prompt humoral alloimmune responses, which was unexpected since previously published data indicate that the thymus rather induces T cell tolerance. Hence, the thymus might serve a dual role bypromoting T cell tolerance but, when over-activated, promoting AMR on set through a mechanism that remains to be elucidated. Further investigations are needed to better understand the complex interplay between the different thymic cell constituents and the modulation of thymic functions throughout life and in situations of thymic reactivation.
2

Ligand-specific signalling at the delta opioid receptor

Mansour, Ahmed 12 1900 (has links)
La douleur chronique est une maladie fréquente et grave qui, pour de nombreuses personnes, ne peut pas être entièrement traitée avec les choix thérapeutiques actuels. Des agonistes des récepteurs opioïdes delta (DORs) ont été proposés comme interventions thérapeutiques pour ces maladies. Des recherches précliniques ont montré que l'activation des DOR produit des effets anti-hyperalgiques et antidépresseurs avec moins d'effets secondaires associés aux analgésiques opioïdes disponibles sur le plan clinique. Cependant, de nombreux agonistes DOR induisent une tolérance analgésique, entravant ainsi leur développement en tant que médicaments. Les travaux de cette thèse visent à mieux comprendre les causes cellulaires et moléculaires de la tolérance ainsi que ce qui rend certains agonistes plus résistants à la tolérance que d'autres. Dans le premier projet, nous nous sommes concentrés sur la superactivation de l'adénylyl cyclase induite par un ligand, un modèle de réponse adaptative médiée par les isoformes de l'adénylyl cyclase (AC). La superactivation de l'adénylyl cyclase (SA) a été associée à l’hyperalgésie, la tolérance analgésique et à des symptômes de sevrage. Ainsi, nous étions curieux de voir si les profils de signalisation cellulaire créés pour la découverte de médicaments pouvaient nous fournir des informations sur la capacité d'un ligand à induire la SA. Pour répondre à cette question, nous avons généré des profils de signalisation complets pour six agonistes différents du DORs (Met-enképhaline, deltorphine II, DPDPE, SNC-80, ARM390 et TIPP) tout en surveillant 12 différents résultats de signalisation avec des biocapteurs à base de BRET. L'analyse des profils de signalisation a montré une sélectivité fonctionnelle remarquable parmi les ligands étudiés. Ensuite, nous avons pu classer les agonistes DOR en fonction de la similarité de leurs profils en utilisant l'approche que nous avons adaptée de notre laboratoire. Nous avons par la suite démontré que, à l'exception de TIPP, dont la réponse SA était Ca2+-indépendante, les catégories de médicaments résultant du regroupement sont corrélées avec la capacité du ligand à provoquer une SA. Une investigation plus approfondie des mécanismes a révélé que Gαi/o était essentiel tant pour la SA déclenchée par TIPP que par Met-Enkepkaline, mais les mécanismes en aval étaient assez distincts pour ces ligands. Ensemble, nos résultats indiquent que les mécanismes sous-jacents à la tolérance cellulaire induite par les agonistes DOR sont spécifiques au ligand. Dans le deuxième projet, nous nous sommes principalement intéressés aux mécanismes de tolérance aux agonistes DOR qui peuvent être en partie expliqués par la désensibilisation et la régulation négative des récepteurs. Il a été établi que, les ligands qui induisent le recyclage du récepteur après l'internalisation ont été trouvés pour fournir une analgésie de longue durée. Par conséquent, les expériences menées dans cette étude ont été menées pour révéler davantage les déterminants moléculaires sous-jacents au recyclage du récepteur et sur la manière dont l'interaction agoniste-récepteur pourrait produire des modèles distincts de régulation des récepteurs. Nous avons évalué l'activation de l'agoniste et la désensibilisation du signal DOR-Gαi1. Nos données ont rapporté que le DPDPE était pratiquement sans effet sur la désensibilisation de l'activation de Gαi1, tandis que la désensibilisation par la deltorphine II était plus importante que celle induite par le DPDPE mais moins que celle induite par l'ARM390 et le SNC-80. Ensuite, nous avons établi que les DORs stimulés par le DPDPE se recyclaient de manière plus efficace que ceux activés par la deltorphine II. De plus, nous fournissons des preuves phénoménologiques que des interventions similaires ont des effets distincts sur le recyclage évoqué par chaque ligand. En particulier, la truncation du DOR ou la surexpression de βarr2 avaient des effets différentiels sur le recyclage par le DPDPE et la deltorphine II. Il est admis que les mécanismes sous-jacents à ces différences restent à être pleinement décrits, mais la phénoménologie de nos observations soutient l'idée que le DPDPE et la deltorphine II mettent en œuvre des processus de recyclage distincts. / Chronic pain is a common and severe disease that, for many people, cannot be fully treated with current therapeutic choices. Agonists of the delta opioid receptor (DOR) have been proposed as therapeutic interventions for this illness. Preclinical research has shown that DORs produce antihyperalgesic and antidepressant-like effects with fewer side effects than the ones associated with clinically available opioid analgesics. However, numerous DOR agonists induce analgesic tolerance, hampering their development as medications. Thus, further investigations are needed to understand the mechanisms underlying the tolerance associated with chronic opioid use. This thesis aimed to further understand the cellular and molecular mechanisms that causes tolerance as well as what makes some agonists more resistant to tolerance than others. In the first project, we focused on ligand-induced cyclase superactivation (SA), a pattern of adaptive response mediated by adenylyl cyclase (AC) isoforms. Cyclase SA has been associated with hyperalgesia, analgesic tolerance, and withdrawal symptoms. Therefore, we were curious to assess weather cell-based signalling profiles created for drug discovery could provide us with information on the ability of a ligand to induce cyclase SA. To address this question, we generated comprehensive signalling profiles for six different DOR agonists (Met-enkephalin, deltorphin II, DPDPE, SNC-80 and ARM390) while monitoring 12 different signalling outcomes with BRET-based biosensors. Analysis of the signalling profiles showed remarkable functional selectivity among the investigated ligands. Next, we were able to classify DOR agonists based on the similarity of their profiles using the approach we adapted from our lab. We subsequently demonstrated that except for TIPP, whose SA response was Ca2+-independent, the drug categories resulting from clustering are correlated with ligand capacity to cause SA. Further investigation of the mechanisms revealed that Gαi/o was essential for both TIPP and Met-Enkepkalin-driven cyclase SA. However, downstream mechanisms were quite distinct for these two ligands. Altogether, our findings indicate that mechanisms underlying cellular tolerance induced by DOR agonists are ligand-specific. In the second project, we were primarily concerned with the mechanisms of tolerance to DOR agonists that may be, in part, explained the receptor desensitization and downregulation. Obviously, ligands that induce receptor recycling after internalization have been found to provide long-lasting analgesia. Therefore, the objectives of the experiments in this project were to assess the molecular determinants affecting receptor recycling and how agonist-receptor interaction can result in different patterns of receptor regulation. We assessed agonist inducing activation and desensitization of DOR-Gαi1 signal. Our data showed that DPDPE was efficient in activating the receptor without noticeable desensitization effect. On the other hand, deltorphin II exerted a significant desensitization effect. However, this effect was low when compared to ARM390 and SNC-80. Then, we established that DORs stimulated by DPDPE recycle more efficiently than those activated by deltorphin II. We also provided phenomenological evidence on receptor recycling elicited by each ligand. In particular, DOR truncation or the overexpression of βarr2 had differential effects on receptor recycling by DPDPE and deltorphin II. While our data shed light on the mechanism underlying these differences, further investigation is needed for the mechanism to be fully elucidated. Admittedly, our observations support the notion that DPDPE and deltorphin II engage distinct recycling processes.

Page generated in 0.0708 seconds