• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 20
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Desenvolvimento da flor e da inflorescência em espécies de Moraceae / Flower and inflorescence development of Moraceae species.

Viviane Gonçalves Leite 04 November 2016 (has links)
As flores das espécies de Moraceae são díclinas (= unissexuais), aclamídeas ou monoclamídeas, pequenas e chama a atenção o gineceu por ser unilocular e uniovulado, mas com aspecto tubular no decorrer do desenvolvimento, resultado de pseudomonomeria. Estas flores estão inseridas em inflorescências consideravelmente diversas em termos estruturais, além de apresentarem síndromes de polinização diferentes. Assim, os objetivos deste trabalho foram esclarecer as vias que originam as diferentes formas de inflorescências e elucidar condições florais enigmáticas como a ausência de perianto e gineceu pseudomonômero, utilizando sete espécies de linhagens diferentes de Moraceae como modelos de estudo: Brosimum gaudichaudii, Castilla elastica, Clarisia ilicifolia, Ficus citrifolia, F. pertusa, Maclura tinctoria e Morus nigra. Inflorescências em vários estádios de desenvolvimento, botões florais e flores foram processados para exames de superfície e anatômico. O meristema da inflorescência é semelhante quanto à forma entre as espécies apenas nos estádios iniciais. Em Ficus pertusa a inflorescência se fecha pelas margens devido à presença de orobrácteas; em Castilla elastica a inflorescência forma uma depressão central (inflorescência pistilada), podendo se tornar bivalvar (inflorescência estaminada), sendo rodeada por brácteas involucrais; em Brosimum gaudichaudii o meristema torna-se plano, e as flores estaminadas e pistiladas ficam imersas no receptáculo e cobertas por brácteas interflorais; em Clarisia ilicifolia e Maclura tinctoria os meristemas das inflorescências estaminadas e pistiladas tornam-se planos e alongam-se, porém, na pistilada adquire uma forma globosa; em Morus nigra o meristema se alonga. Brácteas interflorais estão ausentes apenas em Morus nigra. A morfologia e desenvolvimento florais diferem entre as espécies estudadas em especial quanto ao número de órgãos florais. O perianto é constituído de sépalas robustas, verdes, presentes na maioria das espécies estudadas, com exceção de Brosimum gaudichaudii, cuja flor estaminada exibe uma bractéola que envolve os órgãos florais e a flor pistilada é aclamídea, assim como a flor estaminada de Castilla elastica. Em todas as espécies as sépalas variam em número (dois a cinco), sendo sua iniciação assincrônica. Não há iniciação de primórdios de pétalas, individualizados ou oriundos de divisão dos primórdios de estames. Os primórdios de estames iniciados na flor estaminada (1-5, dependendo da espécie) tornam-se funcionais; portanto, não há aborto de estames na flor estaminada. Na flor pistilada de Castilla elastica raramente iniciam estaminódios. A estrutura anatômica das sépalas e dos estames varia entre as espécies, representando possíveis adaptações à entomofilia ou anemofilia descritas para a família. A epiderme pode apresentar tricomas tectores e secretores, dependendo da espécie. O mesofilo varia em número de camadas nas espécies, e esta variação é refletida na união entre os órgãos. Laticíferos e idioblastos fenólicos e cristalíferos ocorrem no mesofilo das sépalas e conectivo dos estames em todas as espécies, provavelmente atuando na proteção da flor contra herbívoros e radiação UV. Os estames apresentam variação na forma dos filetes e no conectivo. Nas flores estaminadas de Morus nigra e Maclura tinctoria as células do mesofilo são maiores com espaços intercelulares; e na estrutura final da flor, as quatro sépalas são acompanhadas de estames inflexos e um pistilódio, os quais compõem uma complexa estrutura que atua na dispersão dos grãos de pólen. O gineceu pseudomonômero é modificado em pistilódio na flor estaminada de Maclura tinctoria e Morus nigra. Os carpelos são iniciados como um único primórdio central que se divide, originando dois outros, que se alongam assimetricamente. Os próximos estádios diferem entre as espécies e foram resumidos em duas vias ontogenéticas: (1) contribuição total dos dois carpelos na formação do ovário, estilete e estigma, porém, apenas um dos carpelos inicia um óvulo em seu ovário unilocular - encontrado na maioria das espécies. (2) contribuição parcial dos dois carpelos, sendo que o carpelo de maior comprimento participa da formação do ovário, estilete e estigma e inicia um óvulo, enquanto o de menor comprimento participa apenas da formação do ovário - encontrado em Maclura tinctoria. As espécies de Moraceae compartilham estádios iniciais do desenvolvimento da inflorescência, do perianto, androceu e gineceu pseudomonômero, sendo que as principais diferenças ocorrem nos estádios intermediários, o que altera a estrutura da flor e inflorescência. Essas vias de desenvolvimento parecem ser estáveis dentro do clado urticoide e contribuem para a redução da estrutura floral neste grupo de rosídeas. / The flowers of the species of Moraceae are diclinous (= unisexual), achlamydeous or monochlamydeous, small, drawing attention the gynoecium for being unilocular and uniovular but with tubular shape in the course of development, a result of pseudomonomery. These flowers are inserted in structurally diverse inflorescences, and show different pollination syndromes. The objectives of this study were to clarify the pathways that cause the different forms of inflorescences, and to elucidate enigmatic floral conditions as the absence of perianth and pseudomonomerous gynoecium in Moraceae, by using seven species of different lineages of the family as study models: Brosimum gaudichaudii, Castilla elastica, Clarisia ilicifolia, Ficus citrifolia, F. pertusa, Maclura tinctoria and Morus nigra. Infllorescences, buds and flowers in several developmental stages were prepared for examination under scanning electron and light microscopies. The meristem of the inflorescence is similar in shape among the species only in the early stages of development. In Ficus pertusa the inflorescence closes along the margins due to the presence of orobracts. The inflorescence of the Castilla elastica forms a central depression (pistillate inflorescence) and may become bivalvar (staminate inflorescence), being surrounded by involucral bracts. In Brosimum gaudichaudii the meristem becomes flat, and the staminate and pistillate flowers are immersed in the receptacle and covered by interfloral bracts; in Clarisia ilicifolia and Maclura tinctoria the meristem of the staminate and pistillate inflorescences becomes flat and lengthens, however, the pistillate inflorescence acquires a globose shape; in Morus nigra the meristem is elongated. Interfloral bracts are absent only in Morus nigra. The floral morphology and development differ among the species studied especially in terms of number of floral organs. The perianth consists of robust green sepals, present in the majority of the species studied, with the exception of Brosimum gaudichaudii, whose staminate flower exhibits a bract involving the floral organs and the pistillate flower is achlamydeous, as well as the staminate flower of Castilla elastica. In all species the sepals vary in number (two to five), and show asynchronous initiation. There is no initiation of petal primordia, individualized or originated from division of stamen primordia. The stamen primordia initiated in the staminate flower (1-5, depending on the species) become functional; so there is no stamen abortion in the staminate flower. The pistillate flower of Castilla elastica rarely initiates staminodes. The anatomical structure of the sepals and stamens varies among species, representing possible adaptations to the entomophily or anemophily described for the family. The epidermis may have glandular and/or non glandular trichomes, depending on the species. The mesophyll varies in number of layers in the species, and this variation is reflected in the union of the organs. Laticifers and crystal and phenolic idioblasts occur in the mesophyll of the sepals and connective of the stamens in all species, probably acting on flower protection against herbivores and UV radiation. The stamens vary in terms of filament and connective shape. In the staminate flowers of Morus nigra and Maclura tinctoria the cells of the mesophyll are larger with intercellular spaces; and in the final structure of the flower, the four sepals are accompanied by inflexed stamens and a pistillode, which compose a complex structure that acts in the pollen grain dispersal. The pseudomonomerous gynoecium is transformed into pistillodes in the staminate flowers of Maclura tinctoria and Morus nigra. The carpel initiates as a single central primordium which divides and originates two others, which elongate asymmetrically. The next stages differ among species and have been summarized in two ontogenetic pathways: (1) the total contribution of the two carpels in the formation of the ovary, style and stigma, however, in only one of the carpels an ovule arises at the single locule - found in most species. (2) Partial contribution of the two carpels, wherein the carpel with greater length participates in the formation of the ovary, style, stigma and ovule, while the carpel with shortest length is only involved in the formation of ovary - found in Maclura tinctoria. The species of Moraceae share early stages of development of the inflorescence, the perianth, androecium and pseudomonomerous gynoecium, and the main differences occur in the intermediate stages, which alters the structure of the flower and inflorescence. These developmental pathways seem to be stable within the urticalean rosids and contribute to the reduction of the floral structure in this group.
42

Optimisation of a fully autogenous comminution circuit

Steyn, Christiaan Weyers 28 November 2012 (has links)
Autogenous (AG) milling is utilised around the world for rst stage particle size reduction. The system exhibits highly non-linear behaviour in addition to being subject to unmeasured variability associated with most ore bodies. Anglo American Platinum aimed at improving online optimisation of the circuit by implementing industrial model predictive control to reduce system variability and continuously drive towards the optimal operating point within system constraints. A dimensional analysis of the circuit was conducted to explain the relationships between the various milling parameters discussed in the literature survey. The measured variables used in the analysis satis ed Buckingham's theorem, indicating that a complete subset of dimensionless groups were present and suitably able to describe process movement. These relationships were used as a reference point in determining the dynamic step response models between these variables necessary for model based control. The industrial dynamic matrix controller commissioned on the AG mill resulted in a 66 % reduction in power and a 40 % reduction in load. These are the main controlled variables of the mill. The controller also managed to reduce its objective function, e ective power utilisation, by 11 %. This stability improvement enabled a test campaign where the mill was controlled at various operating regions in order to establish the conditions conducive to the nest product size at a given mill feed rate. Moving the mill's operating region from the benchmarked plant to this optimal grind environment (at benchmarked variability) provided an estimated potential recovery increase of 0.27 % (absolute) due to better precious metal liberation. Stabilising the mill at this point with the model predictive controller resulted in a further 0.04 % potential recovery increase (absolute). The 0.31 % potential recovery increase is estimated at a monetary value of $93.1 million per annum. Copyright / Dissertation (MEng)--University of Pretoria, 2013. / Chemical Engineering / unrestricted
43

Study of the degradation mechanisms of the CoCrMo biomedical alloy in physiological media by electrochemical techniques and surface analysis

Valero Vidal, Carlos 26 July 2012 (has links)
La aleación biomédica CoCrMo se emplea en la elaboración de prótesis de sustituciones articulares totales o parciales de cadera y rodilla debido a su biocompatibilidad y a sus buenas propiedades mecánicas entre las que destacan su elevada resistencia a la corrosión y al desgaste. La superficie del biomaterial CoCrMo reacciona de manera espontánea con el medio que la rodea formando una capa pasiva de óxidos metálicos que auto-protege a la aleación del medio y condiciona su comportamiento frente a la corrosión. Hay que tener en cuenta que el medio en el que trabajan estas prótesis es uno de los más agresivos que se conocen lo que agrava el proceso de corrosión. Dicho proceso contribuye a la liberación de iones metálicos dentro del cuerpo humano acelerando el deterioro de dichas prótesis y problemas clínicos en los pacientes. En este contexto, la presente Tesis Doctoral pretende estudiar los mecanismos de biocorrosión que determinan la degradación de la aleación CoCrMo en condiciones fisiológicas. Para ello, en primer lugar se ha realizado la caracterización electroquímica del biomaterial en diferentes condiciones físico-químicas de relevancia biológica (composición química del fluido simulado, pH, contenido en oxígeno y potencial aplicado) las cuales influyen notablemente en las reacciones electroquímicas que tienen lugar en la interfase biometerial/medio. Posteriormente, se ha estudiado cómo influye la adsorción de albúmina (proteína modelo y mayoritaria en el cuerpo humano) en el comportamiento electroquímico de la aleación en función de la concentración de proteína y la temperatura del medio. Este estudio se ha llevado a cabo desde el punto de vista termodinámico y se ha demostrado que el proceso de adsorción de la proteína sobre la superficie de la aleación CoCrMo ocurre de manera espontánea por quimisorción modelándose correctamente mediante la Isoterma de Langmuir. Finalmente, se han estudiado las cinéticas de pasivación y de adsorción de proteína mediante la p / Valero Vidal, C. (2012). Study of the degradation mechanisms of the CoCrMo biomedical alloy in physiological media by electrochemical techniques and surface analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16881 / Palancia
44

Analysis of trends in ambient air quality

Martin, Michael Kelly. January 1977 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Sloan School of Management, 1977 / Includes bibliographical references. / by Michael K. Martin. / M.S. / M.S. Massachusetts Institute of Technology, Sloan School of Management
45

Safety-Specific Person-Environment Fit: Relation with Safety Behaviors, Job Attitudes, and Strain

Britton, Ashlie Rae 17 November 2014 (has links)
No description available.
46

Effect of Nitric Acid Oxidation on Vapor Grown Carbon Fibers (VGCFs). Use of these Fibers in Epoxy Composites

Lakshminarayanan, Priya V 02 August 2003 (has links)
Pyrograf IIITM,/sup> fibers (PR-19-PS, Applied Sciences, Inc.) with 100-300 nm diameters and ~ 10-100 ìm lengths were used with a low viscosity aliphatic epoxy resin (Clearstream 9000, Clearstream Products, Inc.) to produce composites. The VGCFs were oxidized in 69-71 wt% nitric acid (115°C) for various times (10 min to 24 h) to modify the surface to enhance fiber/matrix adhesion. Remarkably, little fiber weight loss was detected even after 24 h of oxidation. Composites containing 19.2 volume percent (29.4 weight percent) VGCFs were prepared. Their flexural strengths and flexural moduli were obtained. The flexural strengths did not increase using oxidized VGCFs. Fiber surfaces were characterized using N2 BET, CO2 DR, XPS, SEM, TEM and base uptake measurements. Increasing the oxidation time produced only small initial increases in surface area up to a limit. Significant surface oxygen was present before oxidation and the amount increased initially, though not continuously, with nitric acid oxidation.
47

Slurry Chemistry Effects On Copper Chemical Mechanical Planarization

Luo, Ying 01 January 2004 (has links)
Chemical-mechanical Planarization (CMP) has emerged as one of the fastest-growing processes in the semiconductor manufacturing industry, and it is expected to show equally explosive growth in the future (Braun, 2001). The development of CMP has been fueled by the introduction of copper interconnects in microelectronic devices. Other novel applications of CMP include the fabrications of microelectromechanical systems (MEMS), advanced displays, three dimensional systems, and so on (Evans, 2002). CMP is expected to play a key role in the next-generation micro- and nanofabrication technologies (Singh, et al., 2002). Despite the rapid increase in CMP applications, the fundamental understanding of the CMP process has been lacking, particularly the understanding of the wafer-slurry-pad interactions that occur during the CMP process. Novel applications of CMP are expected to expand to materials that are complex chemically and fragile mechanically. Thus, fundamental understanding and improvement of slurry design for CMP is the key to the development of sophisticated next-generation CMP processes. Slurry performance for CMP can be determined by several output parameters including removal rate, global planarity, surface topography, and surface defectivity. To achieve global planarity, it is essential to form a very thin passivating surface layer ( < 2 nm) that is subsequently removed by the mechanical component of the slurry (Kaufman et al., 1991) or by combined chemo-mechanical effects (Tamboli, 2000). Chemical additives like hydrogen peroxide (H2O2), potassium ferricyanide, and ferric chloride are added to slurries as oxidizers in order to form a desirable surface layer. Other chemical additives such as inhibitors (e.g. benzotriazole) and complexing agents (e.g. ammonia) are added to the copper slurry in order to modify the oxide layer. That the removal rate of the thin surface layer is greater at the highest regions of the wafer surface than at the lowest regions leads to surface planarity. In this study, various complexing agents and inhibitors are combined to form slurry chemistry for copper CMP processing in H2O2 based slurries at pH values ranging from 2 to 10. Two complexing agents (glycine and Ethylenediamine) and one inhibitor (3-amino-1, 2, 4-triazole) were selected as slurry constituents for detailed chemical synergistic effect study because they showed good materials removal and surface planarity performances. To understand the fundamental mechanisms involved in copper CMP process with the afore-mentioned slurry chemical formations, various techniques, such as electrochemical testing techniques (including potentiodynamic polarization and electrochemical impedance spectroscopy), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM), were applied. As a result, guidelines for optimized slurry chemical formulation were arrived at and the possible mechanisms of surface-chemical-abrasive interactions were determined. From applications point of view, this study serves as a guide for further investigations in pursuing highly effective slurry formulations for copper/low-k interconnect applications.
48

Teleworker Well-Being in COVID-19 as a Function of Change in the Work/Home Boundary: A Multilevel Response Surface Approach

Mitropoulos, Tanya Elise 06 December 2023 (has links)
This dissertation explored how a change in the work/home boundary stemming from a mandatory switch to full-time telework influenced employee well-being. Organizational scholars have called for more investigations into how crisis events impact employees, and the COVID-19 pandemic presented an opportunity to examine a change in employees' work and home domains as it unfolded. Additionally, as full-time telework becomes a more common way of work, understanding how this once rare work arrangement affects employee well-being holistically is important. Using boundary theory, I hypothesized that a switch to full-time telework would increase the level of integration between employees' work and home domains, and that a greater change in integration level would associate with worse daily well-being outcomes. To explain this association, I turned to recovery theorizing and proposed daily work-related rumination and lack of psychological detachment as linking mechanisms. Additionally, I expected that teleworkers whose current level of integration was closer to their preferred level would experience better well-being. Using multilevel response surface analysis (MRSA), which enabled illustration of these complex associations in a more nuanced manner than is possible via either change scores or moderation analyses, I found that maintaining higher work/home integration both before and after telework co-varied with worse holistic well-being through work-related rumination and lack of psychological detachment. I also found that having higher integration than preferred and even high integration when preferred associated with worse well-being through work-related rumination and lack of psychological detachment. Based on these results, I point to boundary work and its facilitation of segmentation as a potential means of protecting employee well-being in the event of a future crisis that moves work into the home. / Doctor of Philosophy / This dissertation examined the influence of the COVID-19-induced abrupt and mandatory switch to telework on employees' well-being. More understanding is needed regarding how crisis events impact employees, according to organizational scholars, and the COVID-19 pandemic presented an opportunity to conduct an investigation of change in employees' work situations in real time. As employees experienced change in numerous ways due to the pandemic and stay-at-home orders, I expected that experiencing greater changes in the separation between one's work and home would correlate with well-being impairments. I expected that less separation (i.e., more integration) between work and home would associate with the tendency to ruminate about work during non-work time (work-related rumination) and an inability to detach from work (lack of psychological detachment), which would in turn relate to worse well-being. I also anticipated that employees whose preference in level of work/home integration more closely matched their current situation would enjoy better well-being, potentially due to less work-related rumination and better psychological detachment. Instead, I found that maintaining old habits in how closely integrated employees keep their work and home lives from before to during telework associated with worse well-being. Employees who had more work/home integration pre-telework and maintained more integration during telework showed worse well-being through more work-related rumination and less psychological detachment. Preferring more integration did not appear to protect one's well-being, as those teleworkers who both preferred and enacted more work/home integration had worse well-being through more work-related rumination and less psychological detachment, as did those who had more integration than preferred. Based on these findings, I recommend that in crisis situations and abrupt, mandatory transitions to full-time telework, teleworkers protect their ability to recover from the workday's often strenuous demands by creating separation between work and home. Employees, organizations, and managers can all facilitate boundary work, wherein the teleworker performs actions to create greater separation between work and home, even when fully working from home.
49

Surface characterisation and functional properties of modified diamond electrodes

Shpilevaya, Inga January 2014 (has links)
In this work, the use of modified diamond as an electrode material with superlative physical and electrochemical properties was investigated in a number of electrochemical applications. The surface chemistry of three differing forms of diamond, namely boron-doped microcrystalline diamond, boron-doped diamond powder and detonation nanodiamond powder was modified utilising such strategies as hydrogen plasma treatment, reactive ion plasma etching along with various chemical treatments. The surface and functional properties of the modified diamond electrodes were studied using a wide spectrum of techniques. The electrochemical activity of these materials was concomitantly investigated in order to expand the knowledge of diamond electrochemistry and to establish an understanding of how the surface chemistry of these materials impacts their electrochemical performance. In the first study, the nanostructuring strategies of boron-doped diamond surface with platinum nanoparticles were developed. In particular, two types of diamond nanostructures were produced: one consisting of platinum particles located on the top of diamond nanorods, the other with platinum particles located in the bottom of diamond nanopits. For the first time, the experimental evidence proving the mechanism of the diamond nanostructuring process was reported. The electrochemical activity of these nanostructured diamond electrodes with regard to the electrochemical oxidation of glucose and methanol was investigated. In the second study, the relationship between the surface chemistry of three differing forms of diamond, including microcrystalline boron-doped diamond, boron-doped diamond powder as well as detonation nanodiamond powder, and the electrode fouling in the result of the adsorption processes in methyl viologen and anthraquinonedisulfonate solutions was investigated. The influence of two dissimilar surface terminations: hydrophobic H-terminated and hydrophilic O-terminated on the electrode performance was studied in detail. This work provides a useful insight on the likely reasons for the undesirable adsorption occurrence which may be experienced in many electroanalytical applications that utilise solid and powdered forms of diamond. The third project extends the discussion on the study of the diamond electrodes, modified with detonation nanodiamond and boron-doped diamond powders and investigates the electrochemical behaviour of these materials. In this work, charge transport within the diamond powder films, partition coefficients of different redox mediators along with heterogeneous electron transfer constants were identified. The chemical modification of these electrodes with platinum nanoparticles along with the mechanism of nucleation and growth of the latter were studied. The enhanced electrode performance with regard to methanol electrooxidation reaction was demonstrated. The fourth study investigates the preparation of nickel modified boron-doped diamond electrodes and ascertains the relationship between the surface chemistry of the modified diamond and the associated electrocatalytic performance of nickel nanoparticles in hydrogen peroxide and glucose electrooxidation. The fifth study reports on the development of a novel surface functionalization strategy, based on porphyrin and amide coupling chemistry, which allows the creation of hybrid biomimetic diamond interface that was used as the artificial &beta;-alanine receptor.
50

Quantification et modélisation par traitement d'images de la répartition des produits pulvérisés à l'échelle de la feuille en fonction de son état de surface et la nature du produit / Quantification and modeling by image processing of the spray products across the leaf by considering the leaf surface state ant the nature of the product

Bediaf, Houda 06 June 2016 (has links)
Dans le cadre de la pulvérisation agricole, la diminution de la quantité des intrants est devenue une étape cruciale, et ce notamment en viticulture. La pulvérisation de précision en viticulture implique cependant une maitrise conjointe du matériel utilisé, des produits et de la répartition de ces produits sur le feuillage. Dans ce contexte, nombreuses sont les recherches menées sur l’optimisation d’utilisation des produits phytosanitaires, leur objectif final étant de réduire de manière significative la quantité d’intrants dans la culture. Cependant, peu de travaux ont été effectués sur l’étude du comportement des produits directement sur le feuillage, ce qui constitue donc l’objectif de cette thèse. La première partie de ce travail est consacrée particulièrement à l’analyse de l’état de la surface foliaire, en se focalisant spécifiquement sur l’étude de la rugosité de surface de la feuille qui constitue un paramètre essentiel dans le processus d’adhésion du produit pulvérisé sur la feuille. L’analyse de la surface de la feuille est réalisée en déterminant les caractéristiques texturales extraites d’images microscopiques. Un nouvel indicateur de rugosité est proposé ainsi que, des paramètres spatiaux et fréquentiels sont utilisés pour estimer et la rugosité de la feuille. Ces paramètres permettent ensuite la caractérisation de l’homogénéité de la surface et la détection des nervures/poils au niveau de la surface de la feuille. Cette partie représente une base fondamentale pour mieux comprendre le comportement des gouttelettes pulvérisées sur la feuille de vigne. La deuxième partie de ce travail de thèse est consacrée à des études expérimentales, qui ont pour but de définir et construire des modèles statistiques permettant d’estimer la quantité de produit restant sur la feuille ou la surface occupée par les gouttes. Ces modèles prennent en considération différents paramètres de pulvérisation, tels que la taille de la goutte et sa vitesse, la tension superficielle du produit, l’angle d’inclinaison et la rugosité de la surface de la feuille. Ces modèlespourraient être vus comme des outils de décision communs pour optimiser la quantité du produit pulvérisé et l’estimation du produit restant sur la feuille, et comme un outil d’aide pour optimiser les bancs d’essais et de tests de la qualité de la pulvérisation. / In the context of agricultural spraying, reducing the amount of input became a crucial step particularly in viticulture. The development of spraying precision in this domain needs the mastery of the use of spray equipment, product and distribution of these products on the foliage. In this area, many research have been done, their main goal being to optimize the use of plant product protection and to reduce significantly the input quantity inside the culture. However, few research has been done on the behavior of the product directly on the foliage which constitutes finally the main goal of this thesis. The first part of this report deals particularly with the analysis of leaf surface state by focusing precisely on the leaf surface roughness, one of the main parameters in product adhesion process. A leaf surface analysis is performed by determining the textural features extracted from microscopic images. A new roughness indicator is proposed and, spatial and frequency parameters were used to estimate and characterize the leaf roughness. These parameters allow both the characterization of surface homogeneity and the detection of the presence of rib/hair on the leaf surface. Indeed, this part represents a fundamental basis for understanding the spray droplet behavior on the vine leaf. The second part of this thesis deals with experimental studies which aim to define and to create statistical models to estimate the amount of product remaining on the leaf surface or the surface occupied by droplets. These models consider different spray parameters, such as droplet size and velocity, surface tension of the product, slope angle and roughness of the leaf. These models could be seen as aid-decision tools to optimize the amount of spray and the estimated product remaining on the leaf.

Page generated in 0.0939 seconds