• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 45
  • 23
  • 22
  • 9
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 379
  • 379
  • 63
  • 56
  • 47
  • 41
  • 40
  • 37
  • 32
  • 27
  • 26
  • 26
  • 25
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
192

Tailoring Surface Properties of Bio-Fibers via Atom Transfer Radical Polymerization

Lindqvist, Josefina January 2007 (has links)
The potential use of renewable, bio-based polymers in high-technological applications has attracted great interest due to increased environmental concern. Cellulose is the most abundant biopolymer resource in the world, and it has great potential to be modified to suit new application areas. The development of controlled polymerization techniques, such as atom transfer radical polymerization (ATRP), has made it possible to graft well-defined polymers from cellulose surfaces. In this study, graft-modification of cellulose substrates by ATRP was explored as a tool for tailoring surface properties and for the fabrication of functional cellulose surfaces. Various native and regenerated cellulose substrates were successfully graft-modified to investigate the effect of surface morphology on the grafting reactions. It was found that significantly denser polymer brushes were grafted from the native than from the regenerated cellulose substrates, most likely due to differences in surface area. A method for detaching the grafted polymer from the substrate was developed, based on the selective cleavage of silyl ether bonds with tetrabutylammonium fluoride. The results from the performed kinetic study suggest that the surface-initiated polymerization of methyl methacrylate from cellulose proceeds faster than the concurrent solution polymerization at low monomer conversions, but slows down to match the kinetics of the solution polymerization at higher conversions. Superhydrophobic and self-cleaning bio-fiber surfaces were obtained by grafting of glycidyl methacrylate using a branched graft-on-graft architecture, followed by post-functionalization to obtain fluorinated polymer brushes. AFM analysis showed that the surface had a micro-nano-binary structure. It was also found that superhydrophobic surfaces could be achieved by post-functionalization with an alkyl chain, with no use of fluorine. Thermo-responsive cellulose surfaces have been prepared by graft-modification with the stimuli responsive polymer poly(N-isopropylacrylamide) (PNIPAAm). Brushes of poly(4-vinylpyridine) (P4VP) rendered a pH-responsive cellulose surface. Dual-responsive cellulose surfaces were achieved by grafting block-copolymers of PNIPAAm and P4VP. / QC 20100804
193

Electrochemical Characterizations and Theoretical Simulations of Transport Behaviors at Nanoscale Geometries and Interfaces

Liu, Juan 12 November 2012 (has links)
Since single nanopores were firstly proposed as a potential rapid and low-cost tool for DNA sequencing in 1990s (PNAS, 1996, 93, 13770), extensive studies on both biological and synthetic nanopores and nanochannels have been reported. Nanochannel based stochastic sensing at single molecular level has been widely reported through the detection of transient ionic current changes induced by geometry blockage due to analytes translocation. Novel properties, including ion current rectification (ICR), memristive and memcapacitive behaviors were reported. These fundamental properties of nanochannels arise from the nanoscale dimensions and enables applications not only in single molecule sensing, but also in drug delivery, electrochemical energy conversion, concentration enrichment and separation, nanoprecipitation, nanoelectronics etc. Electrostatic interactions at nanometer-scale between the fixed surface charges and mobile charges in solution play major roles in those applications due to high surface to volume ratio. However, the knowledge of surface charge density (SCD) at nanometer scale is inaccessible within nanoconfinement and often extrapolated from bulk planar values. The determination of SCD at nanometer scale is urgently needed for the interpretation of aforementioned phenomena. This dissertation mainly focuses on the determination of SCD confined at a nanoscale device with known geometry via combined electroanalytical measurements and theoretical simulation. The measured currents through charged nanodevices are different for potentials with the same amplitude but opposite polarities, which deviates away from linear Ohm's behavior, known as ICR. Through theoretical simulation of experiments by solving Poisson and Nernst-Planck equations, the SCD within nanoconfinement is directly quantified for the first time. An exponential gradient SCD is introduced on the interior surface of a conical nanopre based on the gradient distribution of applied electric field. The physical origin is proposed based on the facilitated deprotonation of surface functional groups by the applied electric field. The two parameters that describe the non-uniform SCD distribution: maximum SCD and distribution length are determined by fitting high- and low-conductivity current respectively. The model is validated and applied successfully for quantification and prediction of mass transport behavior in different electrolyte solutions. Furthermore, because the surface charge distribution, the transport behaviors are intrinsicaly heterogeneous at nanometer scale, the concept is extended to noninvasively determine the surface modification efficacy of individual nanopore devices. Preliminary results of single molecule sensing based on streptavidin-iminobiotin are included. The pH dependent binding affinity of streptavidin-iminobiotin binding is confirmed by different current change signals ("steps" and "spikes") observed at different pHs. Qualitative concentration and potential dependence have been established. The chemically modified nanopores are demonstrated to be reusable through regenerating binding surface.
194

Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

Numazawa, Satoshi 08 August 2012 (has links) (PDF)
This thesis addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO^2 surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and ≈1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960\'s and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain \\lq magic\' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.
195

Preparation Of Gold Decorated Cobalt-silica Core-shell Nanoparticles For Surface Enhanced Raman Scattering Applications

Keser, Sezen Lutfiye 01 September 2010 (has links) (PDF)
Bringing together several materials into a single nanoparticle is an attractive way to design systems that exhibit diverse physical and chemical properties. Cobalt nanoparticles are extensively used in magnetic separation, ferrofluids, and magnetic storage media. The deposition of gold nanoparticles onto cobalt core significantly affects their optical properties due to the introduction of surface Plasmon. Here the synthesis of gold nanoparticles decorated cobalt-silica nanoparticles are reported for the first time. Their optical and magnetic properties and capacity as a surface enhanced Raman scattering (SERS) substrate were investigated. This nano-material is of particular interest as a dual agent allowing both magnetic separation and SERS detection. The synthesis involves three steps: i) synthesis of Co nanoparticles / ii) deposition of a silica shell around the Co core and introduction of amine functional groups on the surface / iii) decoration of the surface with gold nanoparticles. Co nanoparticles were prepared in an inert atmosphere in the presence of capping and reducing agents. Size of the cobalt nanoparticles was varied by changing the concentration of the capping agent. Since cobalt particles are easily oxidized, they were coated with silica shell both to prevent oxidation and allow further functionalization. Silica coating of the particles were performed in water/ethanolic solution of tetraethyl orthosilicate (TEOS). Thickness of silica coating was controlled by varying the concentrations of TEOS. Besides, by adding 3-aminopropyl-triethoxysilane (APTS) to the reaction medium, primarily amine groups were introduced on the silica surface. For further modifications citrate stabilized gold nanoparticles were appended onto the surface of amine modified core-shell cobalt-silica nanoparticles. Gold decorated magnetic core-shell structures were used as SERS substrate with Raman dyes / brilliant cresyl blue (BCB) and rhodamine 6G (R6G). They were also utilized for preconcentration and SERS detection of 4-mercapto benzoic acid (4-MBA). Gold nanoparticles on the silica and thiol group on the 4-MBA were very selective to each other, thus, 4-MBA could be attached on to gold surface and it could be easily separated magnetically from the reaction medium and identified by Raman spectroscopy. Characterization of the cobalt, cobalt-silica and gold modified cobalt-silica nanoparticles was done by Field Emission Scanning Electron Microscopy (FE-SEM), Scanning-Transmission Electron Microscopy (S-TEM), Energy-Dispersive X-ray Spectroscopy (EDX), UV-Vis spectrometry, and Raman microscope system.
196

Preparation And Surface Modification Of Noble Metal Nanoparticles With Tunable Optical Properties For Sers Applications

Kaya, Murat 01 April 2011 (has links) (PDF)
Metal nanostructures exhibit a wide variety of interesting physical and chemical properties, which can be tailored by altering their size, morphology, composition, and environment. Gold and silver nanostructures have received considerable attention for many decades because of their widespread use in applications such as catalysis, photonics, electronics, optoelectronics, information storage, chemical and biological sensing, surface plasmon resonance and surface-enhanced Raman scattering (SERS) detection. This thesis is composed of three main parts about the synthesis, characterization and SERS applications of shape-controlled and surface modified noble metal nanoparticles. The first part is related to a simple synthesis of shape controlled solid gold, hollow gold, silver, gold-silver core-shell, hollow gold-silver double-shell nanoparticles by applying aqueous solution chemistry. Nanoparticles obtained were used for SERS detection of dye molecules like brilliant cresyl blue (BCB) and crystal violet (CV) in aqueous system. v The second part involves the synthesis of surface modified silver nanoparticles for the detection of dopamine (DA) molecules. Determination of a dopamine molecule attached to a iron-nitrilotriaceticacid modified silver (Ag-Fe(NTA)) nanoparticles by using surface-enhanced resonance Raman scattering (SERRS) was achieved. The Ag-Fe (NTA) substrate provided reproducibility and excellent sensitivity. Experimental results showed that DA was detected quickly and accurately without any pretreatment in nM levels with excellent discrimination against ascorbic acid (AA) (which was among the lowest value reported in direct SERS detection of DA). In the third part, a lanthanide series ion (Eu3+) containing silver nanoparticle was prepared for constructing a molecular recognition SERS substrate for the first time. The procedure reported herein, provides a simple way of achieving reproducible and sensitive SERS spectroscopy for organophosphates (OPP) detection. The sensing of the target species was confirmed by the appearance of an intense SERS signal of the methyl phosphonic acid (MPA), a model compound for nonvolatile organophosphate nerve agents, which bound to the surface of the Ag-Eu3+ nanostructure. The simplicity and low cost of the overall process makes this procedure a potential candidate for analytical control processes of nerve agents.
197

Plasma Surface Modification And Characterization Of Pmma Films

Ozgen, Ozge 01 December 2011 (has links) (PDF)
ABSTRACT PLASMA SURFACE MODIFICATION AND CHARACTERIZATION OF PMMA FILMS &Ouml / zgen, &Ouml / zge M.Sc., Department of Polymer Science and Technology Supervisor: Prof. Dr. Nesrin Hasirci Co-supervisor: Prof. Dr. Vasif Hasirci December 2011, 114 pages Surface properties play an essential role for determining the behavior of a material for many applications such as coating, printing, adhesion and prosthesis implanting since the surface is the first part that comes in contact with the environment. Although the bulk properties of some materials are at the desired level, the surface may need to be modified for a better compatibility with its surrounding. Plasma treatment is one generally preferred technique because of its high potential to create various functional groups on the surface of the sample by changing the applied plasma parameters. Some molecules can be successfully immobilized onto these surfaces using these specific chemical functional groups created by plasma. The type of the functional group is important for intended purpose of covalent binding of different molecules on the surface of a material. Present study offers important routes for optimization of the surface functionality of (PMMA) films by changing the plasma parameters. For this purpose, solvent casted polymethylmetacrylate PMMA films were modified by, nitrogen, argon and oxygen plasma by using a radiofrequency (RF) generator / and with various powers (10W, 50W, 100W) for different periods (5min, 15min and 30min). The effects of these plasma parameters (gas type, applied power, plasma time) on hydrophilicity, surface free energy, surface chemistry, and surface topography were investigated. Also, the types of surface free radicals created with oxygen plasma treatment were analysed and the decay of these radicals were examined by Electron Spin Resonance Spectroscopy (ESR). In general, plasma treatment reduced the contact angle of PMMA films where the most hydrophilic surface was obtained for 100W 30 min argon plasma treated sample showing superhydrophilic character with the water contact angle value of ~10&deg / . Surface free energy measurements were carried out according to Geometric Mean, Harmonic Mean, Acid-Base approach and it was found that oxygen, nitrogen and argon plasma treatments increased the surface free energy for all samples by increasing the polar components and introducing functional groups on the surface. X-Ray Photoelectron Spectroscopy (XPS) analysis results revealed that free carbonyl and carbonate groups were formed by oxygen plasma treatment, whereas carboxylic acid and free carbonyl groups were formed after argon plasma treatment, and imine, primary amine, amide and nitrozo groups were formed by nitrogen plasma. Atomic Force Microscopy (AFM) analysis revealed that the roughness of the surface increased considerably from ~2 nm to ~75 nm for the 100W 30 min oxygen plasma treated samples. ESR analysis indicated the presence of peroxy radicals on the surface of the oxygen plasma treated PMMA and the intensity of these radicals increased with increasing plasma power. Decay study of the newly created radicals demonstrated that after 1 month under the atmospheric conditions there were still peroxy radicals on the surface of PMMA. This functionality is important in leading time for further process for binding of different molecules to the surface of the materials for specific purposes. As a result, RF plasma was found to be an effective tool for modification of surface properties of materials with product diversity for intended purposes.
198

The design, synthesis, and use of phosphonic acids for the surface modification of metal oxides

Hotchkiss, Peter J. 17 November 2008 (has links)
Phosphonic acids are known to bind strongly to a variety of metal oxide surfaces. Phosphonic acids were designed in order to impart specific properties to the surface of a range of metal oxides upon formation of a monolayer. A large number of novel phosphonic acids were synthesized and fully characterized. The binding of phosphonic acids to the surface of several metal oxides, such as indium tin oxide (ITO) and barium titanate, was studied in detail and determined to be a mixture of bidentate and tridentate binding modes. The modification of several key surface properties of ITO by phosphonic acid modification was also studied. The work function of ITO could be increased or decreased with respect to unmodified ITO by controlling the dipole of phosphonic acids bound to the surface. Additionally, the surface energy could be substantially lowered by attaching phosphonic acids with non-polar terminal functional groups to the ITO surface. The ability to control these surface properties resulted in organic light-emitting diodes (OLEDs) which showed superior lifetimes and stability with respect to OLEDs incorporating ITO without a phosphonic acid monolayer. In addition, the binding of phosphonic acids to a number of other oxides, such as zinc oxide and zeolites, was also studied.
199

Wettability of modified wood

Sedighi Moghaddam, Maziar January 2015 (has links)
Despite many excellent properties of wood which make it suitable for many applications, it suffers from a number of disadvantages limiting its use. For instance, modification is needed to reduce water sorption and to improve decay resistance, dimensional stability and weathering performance. In addition, wood/liquid interaction such as water wettability on wood plays an important role in design and characteristics of many processes and phenomena such as adhesion, coating, waterproofing, wood chemical modification, and weathering. This thesis focuses on enhancing the understanding of wetting of wood, with emphasis on modified wood. The influence of surface chemical composition of wood and its microstructural characteristics on wetting and swelling properties has also been studied. A multicycle Wilhelmy plate technique has been developed to evaluate wetting properties of porous materials, such as wood, in which the samples were subjected to repeated immersions and withdrawals in a swelling liquid (water) and in a non-swelling liquid (octane). This method was utilized to dynamically investigate contact angle, sorption and swelling properties, as well as dimensional stability of unmodified, chemically and surface modified wood samples. Scots pine sapwood and heartwood samples were utilized to establish the principles of the technique. Acetylated and furfurylated wood samples with different level of modification were thereafter examined utilizing the developed technique for wetting measurements. A perimeter model based on a linear combination of the measured force and final change in sample perimeter was suggested to evaluate the dynamic dimensional stability of wood veneers. The feasibility of this method for studying dynamic wettability was investigated by measuring the changes of advancing and receding contact angles over repeated cycles on surface modified wood samples, created by combining liquid flame spray and plasma polymerisation methods. X-ray photoelectron spectroscopy (XPS) and X-ray computed tomography (XCT) were employed to study the surface chemical composition and microstructural properties of the samples, respectively. Three different kinetic regimes were observed in the wetting measurements: i) fast wetting and spreading of the liquid on the wood surface, ii) void filling and wicking and iii) swelling, which was the slowest of the three. The multicycle Wilhelmy plate method was found to be suitable for studying liquid penetration, sorption, and dimensional stability of swelling materials. The results demonstrate that the wetting properties of wood are highly affected by surface chemistry and microstructure. It was shown that using both swelling and non-swelling liquids in wetting measurements allow to distinguish between capillary liquid uptake and swelling. Based on this, for chemically modified samples, it was demonstrated that acetylation mostly reduces swelling, while furfurylation reduces both swelling and capillary uptake. This is in line with the microstructural study with X-ray computed tomography where a significant change in the porosity was found as a result of furfurylation, conversely acetylation left the total porosity values unchanged. Wetting results for hydrophobised wood samples demonstrate that the multi-scale roughness obtained by combination of nanoparticle coating and plasma polymerization increased both the hydrophobicity and the forced wetting durability compared to the micro-scale roughness found on wood modified with plasma polymerisation alone. / <p>QC 20151029</p> / Sustainable wood modification
200

Wood Nanocellulose Materials and Effects from Surface Modification of Nanoparticles

Salajkova, Michaela January 2013 (has links)
Nanocellulose is an interesting natural material thatis gaining interest in the field of materials science, particularly nanocomposites. Depending on the disintegration route, nanocellulose can be isolated either in the form of long and flexible fibres (nanofibrillated cellulose, NFC), or stiff, rod-like crystals (cellulose nanocrystals, CNC). Nanocellulose can be utilized in nanocomposites either as a reinforcement element or as a network matrix due to its ability to form a strong network. In this thesis, nanocellulose based materials are prepared by evaporation of a liquid medium. The key step in this processing route is a good dispersion of the nanoparticles in the selected matrix. Therefore the importance of surface modification in order to ensure favourable nanocellulose dispersion is clarified in avariety of materials systems. In Paper I, poly(methyl methacrylate) (PMMA) based fibres prepared by electrospinning were reinforced with nanofibrillated cellulose. Native NFC appeared to show a good compatibility with PMMA matrix in the electrospinning solution and resulting fibres. Furthermore, a new method for mechanical testing of mats with random fibre orientation as well as aligned fibres was developed. In Paper II, commingled nanopaper structures with carbon nanotubes (CNTs) were prepared. Several surfactants were used to disperse hydrophobic CNTs in water. A nonylphenol phosphate ester (NPPE) was found to work well for both dispersing CNTs in water and providing compatibility with NFC through electrostatic repulsion between the phosphate ester groups of the surfactant and the carboxylate groups of NFC. In Paper III, a new water based route for functionalization of cellulose nanocrystals was developed. In this approach, inspired by organo-modified layered silicates, quaternary ammonium salts were adsorbed. It was demonstrated that different functionalities (alkyl, phenyl, glycidylor diallyl) can be introduced onto the cellulose and the dispersibility in organic solvents was studied. Subsequently, in Paper IV, nanocomposites with poly(vinyl acetate) (PVAc)were prepared. The effect of modification on the degree of dispersion of the CNC within the matrix was studied as well as the strong effects on the properties of the resulting nanocomposites. In Paper V, taking advantage of the entangled NFC network and the possibility to tailor the pore size and surface chemistry, lubricant-infused slippery films and coatings based on NFC were prepared for the first time. / <p>QC 20131016</p>

Page generated in 0.4442 seconds