• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 45
  • 23
  • 22
  • 9
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 379
  • 379
  • 63
  • 56
  • 47
  • 41
  • 40
  • 37
  • 32
  • 27
  • 26
  • 26
  • 25
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Properties of inorganically surface-modified zeolites and zeolite/ polyimide nanocomposite membranes

Lydon, Megan Elizabeth 20 September 2013 (has links)
Mixed matrix membranes (MMMs) consisting of a polymer bulk phase and an inorganic dispersed phase have the potential to provide a more selective membrane because they incorporate the selectivity of a zeolite dispersed phase while maintaining the ease of use of a polymer membrane. A critical problem in MMM applications is control over the polymer-zeolite interface adhesion during fabrication which can detrimentally impact membrane performance. In this work, MgOxHy (1≤x≤2, 0≤y≤2) nanostructures have been grown on pure-silica MFI and aluminosilicate LTA zeolites through four surface deposition techniques: Grignard decomposition reactions, solvothermal and modified solvothermal depositions, and ion-exchange induced surface crystallization. The structural properties of the surface nanostructures produced by each of the four methods were thoroughly characterized for their morphology, crystallinity, porosity, surface area, elemental composition, and these properties were used to predict the method’s suitability for use in composite membranes. The nanostructured zeolites were used in mixed matrix membranes (MMMs) at two MMMs weight loadings. The dispersion, mechanical properties, and CO₂/CH₄ gas separation properties were measured MMMs made with each method of functionalized LTA. All functionalization methods improve adhesion with the polymer observable by microscopy, the dispersion of particles, and the elastic modulus and hardness of the membrane. Gas permeation measurements prove the quality and effectiveness of the Ion Exchange membrane for CO₂/CH₄ separation by its significant increase in selectivity over the pure polymer. Lastly, the interface between the two materials was studied by probing the interfacial polymer mobility using NMR spin-spin relaxation measurements and mechanical mapping of membrane cross sections. It was shown that the nanostructures have both steric and chemical interactions with the polymer. Mapping of the elastic modulus indicated that functionalization methods that resulted in poorer zeolite coverage also disrupted the mechanical properties of the membrane at the interface of the materials. The investigations in this thesis provide detailed structure-property relationships of surface-modified molecular sieves and nanocomposite membranes fabricated using these materials, allowing a rational approach to the design of such materials and membranes.
202

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
203

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
204

Nanobubbles and the Nanobubble Bridging Capillary Force

Marc Hampton Unknown Date (has links)
Interactions between hydrophobic surfaces at short separation distances (at the nanometer scale) are very important in a number of industrial applications. For example, in the froth flotation mineral separation process it is the interaction between the hydrophobic particle and the bubble which is paramount in separating the valuable minerals from the gangue. A number of studies, most notably using the atomic force microscope (AFM) and the surface force apparatus (SFA) have found the existence of a long range hydrophobic attractive force between hydrophobic surfaces that cannot be explained by classical colloidal science theories. In many cases, this force is an artefact due to the accumulation of sub-microscopic bubbles, the so called nanobubbles, at the liquid-hydrophobic solid interface. Thus, what was thought to be a hydrophobic force was actually a capillary force resulting from the gaseous bridge formed from the coalescence of nanobubbles, that is, the nanobubble bridging capillary force (NBCF). It is the purpose of this thesis to provide further insight into the accumulation of soluble gases at the liquid-hydrophobic solid interface and the resulting NBCF. Specifically, this thesis studies these phenomena from a fundamental standpoint and additionally relates the findings to froth flotation mineral separation. A systematic method to measure the NBCF by controlling the size of the gaseous capillary bridge was devised in this thesis. Control of the capillary bridge was achieved by utilising the solvent-exchange method to accumulate nanobubbles at the surface, followed by surface scanning of the colloidal probe over the flat surface to harvest nanobubbles. Thus, the NBCF has been controlled to allow for greater success in modelling the interaction, understanding the geometric parameters of the bridge, observing changes in friction force due to nanobubbles and understanding the influence of ethanol on the force. An outcome of this thesis was the development of a capillary force model which describes the NBCF. The model considers a constant volume and constant contact angle assumption for a gaseous capillary bridge of toroidal geometry. The model was very successful in describing the NBCF at long separation distances (>20nm) for both the approach and retract interactions. The close fitting between the experimental data and the model allowed accurate determinations of the advancing and receding contact angles, bridge geometry and volume. The successful implementation of the capillary force model allowed a link between the bridge volume, and the resulting adhesion to the friction force between hydrophobic solid surfaces in water. Additionally, the model allowed the change from an attractive to a repulsive NBCF to be described by a change from a concave to convex bridge geometry. Thus, this thesis has added considerable knowledge to the fundamental aspects of nanobubbles and the NBCF. The final chapters of this thesis utilised the knowledge gained from the fundamental studies to understand the influence of nanobubbles on flotation. In the first study, the influence of NaCl concentration on the morphology of gaseous domains on a graphite surface is discussed in relation to the increased recovery of coal in saline water. In the second study, methanol treatment of a ZnS ore was found to increase the floatability due to slime removal and the artificial formation of nanobubbles.
205

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
206

Template synthesis and surface modification of metal oxides

Drisko, Glenna Lynn January 2010 (has links)
Agarose gel was used as a template to prepare zirconium titanium mixed oxide pellets with bimodal porosity. The materials were fully characterized to assess the effect ofZr:Ti ratio on the physical properties. It was found that the metal oxide ratio had an impact on surface acidity, the number of surface hydroxyl groups, the surface area the crystallinity and the mesopore diameter. The oxides were tested for the adsorption of vanadium ions to determine which Zr mole fraction exhibited the highest loading capacity and the fastest kinetics. A comparative study demonstrated that a hierarchical pore structure had enhanced mass transport properties over a monomodal pore structure of similar Zr:Ti composition. / Three porous zirconium titanium oxides (25 mol% Zr) were synthesized using sol-gel chemistry. One of the materials was templated from agarose gel, the second was produced without the use of a template and the third was templated from stearic acid. All three materials varied in pore architecture. Surface modification was performed post-synthetically using propionic acid (a monomer), glutaric acid (a dimer) and three molecular weights of poly(acrylic acid). Higher loading within the inorganic support was obtained for the polymers than for the smaller molecules. It was found that the pore architecture had a strong bearing on the quantity of polymer incorporated into the metal oxide framework and some effect on the rate of polymer adsorption. Thus there is great value in using templates to control pore structure. The materials were subjected to irradiation with 60Co γ-rays to determine the stability of the inorganic support and the organic functionality. / Hybrid materials were prepared by coating five distinct macroporous commercial membranes with zirconium titanium oxide using sol-gel chemistry. Calcination of these templated materials produced oxide membranes which had a suite of macropore and mesopore architectures, pore volumes and surface areas. These differences in physical properties were used to conduct a fundamental study on the relationship between the mesopore size and volume and the capacity for polymer incorporation. It was found that the polymer loading capacity was highly dependent on the pore size and pore volume. As surface area increased, loading capacity decreased, indicating that much of the increased internal surface was inaccessible to the macromolecules. Thus, mesopore diameter and pore volume must be considered when designing a mesoporous solid support. / Hierarchically porous zirconium titanium oxide and carbon zirconium titanium oxide beads with adjustable meso- and macroporosity were prepared in a one-pot, engineering-friendly process. Poly(acrylonitrile) and block copolymer Pluronic F127 were used as structure directing agents. These millimeter sized spheres were fabricated through drop-wise addition of the template-metal alkoxide solution into either water or liquid nitrogen. Carbon zirconium titanium oxide beads were produced by carbonizing the beads at 550 °C in an inert atmosphere. The (carbon) zirconium titanium oxide beads were assessed for surface accessibility and adsorption rate by monitoring the adsorption of uranyl from solution. / Porous metal oxide monoliths, specifically silica, titania, zirconia and mixed oxides containing aluminum and yttrium, were prepared in a one-pot synthesis. Macroporosity was induced using the phase separation of furfuryl alcohol. These materials have a suite of mesopore and macropore structures, the domains of which can be controlled by adjusting the synthesis conditions. These conditions were studied in detail to optimize the pore interconnectivity, the monolith stability, the pore volume and the surface area.
207

Synthèse solvothermale supercritique de nanostructures d'oxyde de cérium / Supercritical solvothermal synthesis of cerium oxide nanostructures

Slostowski, Cédric 07 December 2012 (has links)
La synthèse contrôlée de nanoparticules constitue toujours un enjeu majeur en science des matériaux (pour des applications telles que la catalyse par exemple) et la voie «fluides supercritiques» permet de répondre en partie à ce challenge. Dans ce contexte, ce travail de thèse a été consacré à l’élaboration de nanostructures d’oxyde de cérium aux caractéristiques contrôlées (tailles, morphologies, propriétés de surface,…) par synthèse solvothermale supercritique. A partir de l’étude de l’influence des paramètres opératoires du procédé sur les caractéristiques physico-chimiques des nanomatériaux obtenus, des mécanismes de formation et de fonctionnalisation de surface ont été proposés. D’un point de vue applicatif, ces poudres ont été caractérisées qualitativement et quantitativement vis-à-vis de la capture réversible du CO2. / The controlled synthesis of nanoparticles remains of key importance in materials science (for applications such as catalysis for instance) and “supercritical fluids” processes allow partially addressing this challenge. In this context, this PhD work has been dedicated to the synthesis of cerium oxide nanostructures with controlled characteristics (size, morphology, surface property,…) by supercritical solvothermal approaches. Through the study of the influence of process operating parameters on physicochemical characteristics of the synthesized materials, formation and surface modification mechanisms have been proposed. From an applicative point of view, powders have been submitted to qualitative and quantitative characterization towards CO2 capture.
208

Modulation de l'interface entre biofilms microbiens électroactifs et surface d'électrode : modifications de surface et effets de milieux / Interface modulation between electroactive microbial biofilms and the surface of the electrode : surface modification and effect of the media

Smida, Hassiba 13 December 2017 (has links)
Les piles à combustible microbiennes (PCMs) sont des dispositifs bio-électrochimiques qui utilisent des biofilms bactériens électroactifs afin de catalyser des réactions d'oxydoréduction anodique et/ou cathodique pour générer de l'énergie électrique. Afin de promouvoir le développement et la connexion des biofilms, points clé dans les performances des PCM, la surface de l'anode de graphite est fonctionnalisée par des unités pyridine. Celles-ci sont greffées de façon covalente via la réduction électrochimique de cations diazopyridinium, formés in situ à partir de précurseurs amine, en s'inspirant de la méthode d'électrogreffage des sels d'aryle diazonium. Cela permet d'obtenir une interface très robuste. En comparant la réactivité de différents dérivés aminopyridine et les propriétés des couches greffées résultantes, la réduction des cations para-diazopyridinium conduit à des films fins et compacts, bien adaptés pour favoriser l'adhésion bactérienne et le transfert d'électrons entre la surface de l'anode et les bactéries électroactives. La présence d'unités pyridine immobilisées en surface de l'anode permet un développement plus rapide du biofilm et des performances accrues de la PCM pour des biofilms jeunes. Par comparaison, une anode modifiée par des multicouches de polyphénylène puis colonisée par un biofilm bactérien se révèle moins efficace pour la catalyse de l'oxydation de l'acétate. La nature et les propriétés physicochimiques de l'électrolyte sont également un paramètre important dans le développement du biofilm bactérien. Les liquides ioniques à température ambiante présentent des propriétés uniques, notamment en termes de solvatation, et leur utilisation dans des applications biotechnologiques a récemment émergé. Toutefois, leurs effets sur les biofilms bactériens restent encore peu connus. L'ajout d'une sélection de liquides ioniques hydrophiles et hydrophobes à base de cations imidazolium ou pyridinium dans l'anolyte, même en très faible quantité, ou immobilisés à la surface de l'anode inhibe le développement du biofilm. / Microbial Fuel Cells (MFCs) are bio-electrochemical devices based on electroactive bacterial biofilms which catalyze the electron transfer both at the anode and cathode to generate electrical power. To enhance the biofilms development and to improve the biofilm-electrode connection, being both key features in the performance of the MFC, the graphite anode was functionalized by pyridine units. In order to ensure a robust interface, pyridine units are grafted covalently through the electrochemical reduction of diazopyridinium cations in situ formed from aminopyridine precursors, following the well-known electrografting method for aryl diazonium salts. By comparing the reactivity of various aminopyridine derivatives and the resulting grafted layers properties, the para-diazopyridinium cations reduction results in a thin and compact layer, which is the best suited for promoting bacterial adhesion and favorable electron transfer between the anode surface and electroactive bacteria. The presence of pyridine units immobilized on the anode surface leads to a faster biofilm development together with increased MFC performances for young biofilms. In contrast, anode modified with polyphenylene multilayers and then colonized by a bacterial biofilm has been proved to be less effective for the catalysis of acetate oxidation. On the other hand, the nature of the electrolyte and the physicochemical properties are also important parameters for the bacterial biofilm development. Room temperature ionic liquids have unique properties, particularly in terms of solvation, and their use in biotechnological applications has recently emerged. However, their effects on bacterial biofilms remain little known. The addition of a selection of hydrophilic and hydrophobic ionic liquids based on imidazolium or pyridinium cations in the anolyte, even in very small quantities, or immobilized at the anode surface inhibited the biofilm development.
209

Laser surface micro/nano patterning for improving aerodynamic performance

Otanocha, Omonigho January 2016 (has links)
The use of ultrafast lasers in material surface engineering has gained pre-eminence in recent years. This is due to optimal utility arising from their versatility, better process control, repeatability and high precision fabrication, without need for post processing. Reported in this thesis are experimental results on the use of picosecond laser to produce micro-patterns on cyclone components and their effects on flow characteristics. Results show that micro- dimples achieved reduction in dust accumulation within a multi-cyclone system considered, up to 78%. These micro-dimples when applied on the cyclone roof effected a 3% reduction in inlet velocity and 5% reduction on the dynamic pressure across the cyclone, without dust introduction. Results support the possibility for energy savings, without compromise on cyclone overall separation efficiency. Findings further demonstrated the effects of micro-riblets on cyclonic airflow at the wall boundary. Research outcomes supported the view that surface roughness of the cyclone roof could contribute on its dust separation capacity. Injection moulding was used to produce bumps on ABS plastic materials utilising picosecond laser machined micro-dimples on H13 tool steel. A statistical model detailing the interactions between the critical factors involved with picosecond laser interaction with H13 for micro-patterning was proposed. Critical factors identified were laser fluence, scanning speed and number of laser scans. In addition, results demonstrated the suitability of predicting depth of 40 - 100 µm for H13 tool steel, with 96% accuracy. The findings in this research could be explored to develop embedded micro/nano-wires within riblets through injection moulding, to effect electrically biased charging within the internal walls of a cyclone to aid dust separation processes.
210

Vacuum Ultraviolet Surface Modification of Organic Materials / 有機材料の真空紫外光表面改質 / ユウキ ザイリョウ ノ シンクウ シガイコウ ヒョウメン カイシツ

Kim, Young-Jong 24 September 2008 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14164号 / 工博第2998号 / 新制||工||1445(附属図書館) / 26470 / UT51-2008-N481 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 粟倉 泰弘, 教授 酒井 明 / 学位規則第4条第1項該当

Page generated in 0.094 seconds