• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 45
  • 23
  • 22
  • 9
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 378
  • 378
  • 63
  • 56
  • 47
  • 41
  • 40
  • 37
  • 32
  • 27
  • 26
  • 26
  • 25
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Nanocomposite-based Lignocellulosic Fibers

Lin, Zhiyuan 15 January 2010 (has links)
The formation of layered nanoparticle films on the surface of wood fibers is reported in this study. The layer-by-layer (LbL) assembly technique was comprehensively investigated as a non-covalent surface modification method for lignocellulosic fiber. Nanocomposite-based lignocellulosic fibers were successfully fabricated by sequential adsorption of oppositely charged poly(diallydimethylammonium) chloride (PDDA) and clay nanoparticles in a number of repeated deposition cycles. Nanocomposite fibers displayed layered structure as indicated by the electrokinetic potential studies and scanning electron microscopy (SEM) analysis. Layer-by-layer films of PDDA and clay impacted the thermal stability of wood fibers. Average degradation temperature at 5 and 10% weight loss for modified fibers with 4 bi-layers increased by up to ~24 and ~15°C, respectively. Significant char residue formed for the LbL modified fibers after heating to 800°C, indicating that the clay-based coating may serve as a barrier, creating an insulating layer to prevent further decomposition of the material. Layer-by-layer film formation on wood fibers was investigated as a function of parameters related to fiber composition and solution conditions (ie. presence of lignin, salt concentration and pH). Elemental analysis of modified fibers revealed that PDDA adsorption to the fibers was reduced for all solution conditions for the samples with the highest content of lignin. Upon extracting the non-covalently attached lignin, the samples showed the greatest amount of PDDA adsorption, reaching to 1.5% of total mass, under neutral solution conditions without the presence of added electrolyte. Furthermore, the influence of both the amount of PDDA adsorbed onto the fiber surface and electrokinetic potential of modified fibers on subsequent multilayer formation was quantified. Under select fiber treatments, great amount of PDDA/clay (up to ~75% total mass for only 4 bi-layers) was adsorbed onto wood fibers through the LbL process, giving these high surface area fibers nanocomposite coatings. LbL modified fibers were melt compounded with isotactic polypropylene (PP) and compression molded into test specimens. The effect of LbL modification as a function of the number of bi-layers on composite performance was tested using the tensile, flexural, dynamic mechanical and thermal properties of fiber reinforced thermoplastic composites. LbL modified fiber composites had similar modulus values but significantly lower strength values than those of unmodified fiber composites. However, composites composed of LbL modified fibers displayed increased elongation at break, increasing by more than 50%, to those of unmodified samples. DSC results indicated that crystallization behavior of PP is promoted in the presence of wood fibers. Both unmodified and LbL modified fibers are able to acts as nucleating agents, which cause an increase of the crystallinity of PP. Moreover, results from tensile and flexural strength, dynamic mechanical analysis and water absorption tests revealed that the material (PDDA or clay) at the terminal (outer) layer of LbL modified fiber influences the performance of the composites. These findings demonstrate control over the deposition of nanoparticles onto lignocellulosic fibers influencing terminal surface chemistry of the fiber. Further investigation into using renewable fibers as carriers of nanoparticle films to improve fiber durability, compounding with thermoplastics that have higher melt processing temperatures, and tailoring terminal surface chemistry to enhance adhesion is justified by this research. / Ph. D.
172

Effect of surface modifications on biodegradation of nanocellulose and microbial response

Singh, Gargi 22 September 2015 (has links)
History teaches us that novel materials, such as chlorofluorocarbon and asbestos, can have dire unintended consequences to human and environmental health. The exponential growth of the field of nanotechnology and the products developed along the way provide the opportunity for a new paradigm of design thinking, in which human and environmental impacts are considered early on in product development. In particular, nanocellulose is touted as a promising green nanomaterial, as it is sourced from an effectively inexhaustible feedstock of wood-based cellulose and is assumed to be harmless to the environment since it is derived from a natural material and assumed to be biodegradable. The various forms of nanocellulose possess an impressive diversity of properties, making it suitable for a wide variety of applications such as drug delivery, reinforcement, food additives, and iridescent make-up. However, as nanomaterials can have different properties relative to their bulk form, it is questionable whether they are truly environmentally friendly, particularly in terms of their biodegradability and potential impacts to receiving environments. Given the projected mass-scale application of nanocellulose and the inevitability of its subsequent release into environment, the purpose of this study was to determine the biodegradability of nanocellulose and the response of environmentally-relevant microbial communities. Specifically, it was hypothesized that cellulose in the nano size range would display distinct biodegradation patterns and rates, relative to larger forms of cellulose. Further, it was hypothesized that modification of nanocellulose, in terms of morphology and surface properties (e.g., charge), would further influence its biodegradability. Wetlands and anaerobic digesters were selected as two environmentally-relevant receiving environments that also play critical roles in global carbon turnover. To examine the biodegradability of nanocellulose, two distinct microbial consortia were enriched from wetland (W) and anaerobic digester (AD) inocula and applied in parallel experiments. The consortia were grown under anaerobic conditions with microcrystalline cellulose as the sole carbon substrate over a period of 246 days before being aliquoted to microcosms for subsequent biodegradation assays. Various forms of nanocellulose were spiked into the microcosms and compared with microcrystalline cellulose as a non nano reference. Microcosms were sacrificed in triplicate with time to monitor cellulose degradation as well as various measures of microbial community response. Microbial communities were characterized in terms of gene markers for total bacteria (16S rRNA genes) and anaerobic cellulose degraders (glycoside hydrolase family 48 genes, i.e., cel48) as well as high throughput amplicon sequencing of 16S rRNA genes (V4 region). A series of three studies examined: 1) the effect of nanocrystalline versus microcrystalline cellulose; 2) the effects of nanocellulose morphology (crystalline rod versus filament) and surface functionalization (cationic and anionic); and 3) metagenomic characterization of cellulose degrading communities using next-generation DNA sequencing. It was found that the nano- size range did not hinder cellulose degradation, in fact, nanocrystalline cellulose degraded slightly faster than microcrystalline cellulose according to 1st order kinetics (1st order decay constants: 0.62±0.08 wk-1 for anionic nanocrystalline cellulose versus 0.39±0.05 wk-1 for microcrystalline cellulose exposed to AD culture; 0.69±0.04 wk-1 for anionic nanocrystalline cellulose versus 0.58±0.05 wk-1 for microcrystalline cellulose exposed to W). Experiments comparing the effects of surface functionalization indicated that anionic nanocellulose degraded faster than cationic cellulose (1st order decay constants for cationic nanocrystalline cellulose: 0.48±0.06 wk-1 and 0.58±0.07 wk-1 on exposure to AD and W cultures respectively). Measurements of 16S rRNA and cel48 genes were consistent with this trend of greater biological growth and cellulose-degrading potential in the anionic nanocellulose condition, suggesting that surface properties can influence biodegradation patterns. Taxonomic characterization of 16S rRNA gene amplicons suggested that taxa known to contain anaerobic cellulose degraders were enriched in both W and AD consortia, which shifted in a distinct manner in response to exposure to the different cellulosic materials. This suggests that distinct groups of microbes may drive the biodegradation of different forms of cellulose. Further, metagenomic investigation provided new insight into taxonomic and functional aspects of anaerobic cellulose degradation, including identification of enzymatic families associated with degradation of the various forms of cellulose. Overall, the findings of this study advance understanding of anaerobic cellulose degradation and indicate that nanocellulose is likely to readily degrade in receiving environments and not pose an environmental concern. / Ph. D.
173

Characterization of Hydrophobically Modified Titanium Dioxide Polylactic Acid Nanocomposite Films for Food Packaging Applications

Baek, Naerin 12 August 2016 (has links)
Titanium dioxide (TiO2) polymer nanocomposites improve barrier properties to gas and moisture and mechanical strength as well as providing active packaging functions. However, low compatibility between hydrophilic TiO2 nanoparticles and hydrophobic polymers such as polylactic acid (PLA) causes problems due to the tendency of TiO2 nanoparticles (TiO2) to agglomerate and form large clusters. A surface modification of TiO2 with long chain fatty acid may improve the compatibility between PLA and TiO2. The goal of this study was to enhance barrier properties of oxygen and water vapor, mechanical strength and add light protecting function to PLA composites by incorporation of oleic acid modified TiO2 nanoparticles (OA_TiO2). The objectives of this study were: 1) synthesize TiO2 and modify surface of TiO2 with oleic acid, 2) investigate dispersion stability of TiO2 and OA_TiO2 in hydrophobic media, 3) incorporate TiO2 and OA_TiO2 into a PLA matrix and to characterize properties of TiO2PLA (T-PLA) and OA_TiO2 PLA nanocomposite films (OT-PLA), and 4) to determine stability of green tea infusion in T-PLA and OT-PLA packaging model systems during refrigerated storage at 4 °C under florescent lightening. TiO2 was synthesized by using a sol-gel method and the surface of TiO2 was modified by oleic acid using a one-step method. T-PLA and OT-PLA were prepared by solvent casting. TiO2 and OA_TiO2 were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis and dynamic light scattering. The barrier properties to oxygen and water vapor, morphology, mechanical properties, thermal stability and light absorption properties of T-PLA and OT-PLA were characterized. Dispersion of TiO2 was improved in PLA matrix by the surface modification method with oleic acid. OT-PLA had more effective improvements in the barrier properties and flexibility than T-PLA and PLA, but toughness of the films based on Young's modules of OT-PLA was lower than the T-PLA and the PLA. The OT-PLA may have a potential to be used as transparent, functional and sustainable packaging films, but limited use for complete visible and UV-light protection for photosensitized foods. / Ph. D.
174

Surface Modification of Multimaterial Multifunctional Fibers Enabling Biosensing Applications

Lopez Marcano, Ana Graciela 27 June 2018 (has links)
During the last decades, the continuing need for faster and smaller sensors has indeed triggered the rapid growth of more sophisticated technologies. This has led to the development of new optical-based sensors, able to detect and measure different phenomena using light. Furthermore, material processing technologies and micro fabrication methods have exponentially advanced, allowing engineers and scientists to develop new and more complex sensors on optical fibers platforms; specifically attractive for life science and biomedical research. All these substantial developments have brought biosensors to a point where multifunctionality is needed, this has led to envision the "Lab-on-Fiber" concept. Which promotes the integration of different sensing components into a single platform, an optical fiber. In this work, an integrated system with non-conventional polymer optical fibers and their further surface modification has been developed. With these different approaches, electrodes, hollow channels and plasmonic nanostructures can be incorporated into a single optical fiber-based sensor, allowing for both electrical and optical sensing with the capabilities of tuning and signal enhancement thanks to the metallic nanostructures. Different fiber substrates can be designed and modified in order to satisfy multiple requirements for a wide variety of applications. / MS
175

Enhanced Architectural and Structural Regulation Using Controlled Free Radical Polymerization Techniques; Supramolecular Assemblies: Pseudorotaxanes and Polypseudorotaxanes

Jones, Jason William 24 April 2001 (has links)
Due in large part to the growth and development of reliable surface characterization techniques, as well as to advances in the physical and chemical techniques used to modify surfaces, the technology of surface modification has seen rapid expansion over the past two decades. A major thrust of this research is the growth of controlled/"living" polymeric brushes from the surface of various substrates, an advance that promises to be a facile and reproducible way of altering surface properties. A unique initiator bearing ATRP (atom transfer radical polymerization), cleavage, and condensation functionalities was prepared and attached to the hydrolyzed surface of silica gel. Preliminary results indicate that control of reversibly terminated grafts of varying degrees of polymerization with polydispersity indices approaching 1.5 can be readily achieved-significant findings in the quest to design desired surface characteristics. Important physical characteristics may also be altered by way of varying molecular topologies. In the second major research thrust, the use of self-assembly to construct such topologies in the form of pseudorotaxanes fashioned from diverse macrocycles with multifarious guest ions is discussed. While the underlying goal was to investigate and understand the mode of complexation based on such environmental factors as substituent affects and neighboring group influences, new insight was gained on the synthetic manipulation of cooperative events-events that freely occur in nature. The complexation behavior of several functionalized bis-(meta-phenylene)-32-crown-10 macrocycles with various paraquat guest moieties was. As expected, studies indicated that electron-donating substituents on the crown ether drive association, a likely result of increased p -p interactions among host and guest species. The association between a bicyclic macrocycle and dimethyl paraquat was also investigated. Not surprisingly, binding of paraquat by the bicyclic was much stronger than the binding found in analogous macrocycles. Lastly, the endgroup functionalization of poly(propyleneimine) dendrimers with two crown ether macrocycles was performed and the complexation with host-specific guests studied. Curiously, two extreme binding regimes were found: the larger 32-membered crown ether assembly displayed anti-cooperative behavior upon complexation with paraquat, while the smaller 24-membered macrocyclic system exhibited cooperative effects with 2o ammonium ions. These cooperative results are among the very first described for non-biological systems and hint at their potential use in developing highly efficient, synthetically designed supramolecular systems. / Master of Science
176

Self-Assembly of Pullulan Abietate on Cellulose Surfaces

Gradwell, Sheila Elizabeth 02 September 2004 (has links)
Wood is a complex biocomposite that exhibits a high work of fracture, making it an ideal model for multiphase man-made materials. Typically, man-made composites demonstrate interfacial fracture at failure due to abrupt transitions between neighboring phases. This phenomenon does not occur in wood because gradual phase transitions exist between regions of cellulose, hemicellulose, and lignin and therefore adhesion between adjacent phases is increased. The formation of interphases occurs as a consequence of the self-assembly process which governs the formation of wood. If this process was understood more thoroughly, perhaps tougher man-made, biobased composites could be prepared. To study self-assembly phenomena in wood, a system composed of a model copolymer (pullulan abietate, DS=0.027) representing the lignin-carbohydrate complex (LCC) and a model surface for cellulose fibers was used. The self-assembly of the polysaccharide pullulan abietate (DS=0.027) onto a regenerated cellulose surface prepared using the Langmuir-Blodgett (LB) technique was studied via surface plasmon resonance (SPR). Rapid, spontaneous, and desorption-resistant cellulose surface modification resulted when exposed to the model LCC. Adsorption was quantified using the de Feijter equation revealing that between 9-10 anhydroglucose units (AGUs) adsorb per nm&178; of cellulose surface area when cellulose is exposed to pullulan abietate (DS=0.027) compared to the adsorption of 6.6 AGUs per nm&178; of cellulose surface area when cellulose is exposed to unsubstituted pullulan. / Master of Science
177

NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS, FORMULATION AND CHARACTERIZATION

Kanniah, Vinod 01 January 2012 (has links)
Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization. Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(α-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase separated at temperatures less than -15 °C. Also, the surface of graphite additive is quantitatively analyzed and modified via silanization for each oligomer. Thus, upon separation of the oligomer mixture, each functionalized graphite additive migrates to its preferred oligomers and forms a uniform dispersion. Similarly, nanoparticle additives in polymer matrices can be used to develop new low haze ultrathin film optical coatings. A model system included an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles deposited on glass and polycarbonate substrates. Surface (root mean squared roughness, Wenzel’s contact angle) and optical properties (haze) of these self assembled experimental surfaces were compared to simulated surface structures. Manipulating the size ratios of silica nanoparticle mixtures varied the average surface roughness and the height distributions, producing multimodal structures with different packing fractions. In both nanofluid and nanocomposite applications, nanoparticle additives tend to aggregate/agglomerate depending on various factors including the state of nanoparticles (powder, dispersion). A set of well-characterized ceria and titania nanoparticle products from commercial sources along with in-lab synthesized nanoparticles were studied via fractal theory. Fractal coefficients were obtained through two-dimensional images (from electron microscopy) and particle size distributions (from electron microscopy and dynamic light scattering). For some arbitrary collections of aggregated nanoparticle materials, the fractal coefficients via two-dimensional images correlated well to the average primary particle size. This complementary tool could be used along with conventional nanoparticle characterization techniques when not much is known about the nanoparticle surfaces to characterize agglomeration or aggregation phenomena.
178

Design and synthesis of xyloglucan oligosaccharides : structure-function studies and application of xyloglucan endotransglycosylase PttXET16A

Baumann, Martin J. January 2004 (has links)
<p>Primary cell walls are a composite of cellulose microfibrilsand hemicelluloses. Xyloglucan is the principal hemicelluloseof primary cell walls of dicotyledons. Xyloglucanendotransglycosylases (XETs) cleave and religate xyloglucanpolymers in plant cell walls. A XET (PttXET16A) from hybridaspen has been heterologously expressed and characterized inour lab.</p><p>To study XETs enzymology on a molecular level a series ofnovel xyloglucan oligosaccharides (XGOs) have been synthesized.The chromogenic 2-nitrophenol XGO and fluorogenic XGOs havebeen used as kinetic probes for PttXET16A. The first 3-Dstructure of the XET and of the enzyme-substrate complexrevealed new insights into the requirements fortransglycosylation.</p><p>Cellulose fibers are an important raw material for manyindustries. In a novel chemo-enzymatic approach, thetransglycosylating activity of XET was used for biomimeticfiber surface modification. The aminoalditol XGO derivate wasused as key intermediate to incorporate novel chemicalfunctionality into xyloglucan. TheXGO derivatives wereintegrated into xyloglucan with PttXET16A. The resultingmodified xyloglucan was used as a versatile tool fiber surfacemodification.</p>
179

Synthesis and modifications of materials for separation science

Nordborg, Anna January 2008 (has links)
This thesis deals with the preparation of materials for use in separation science and their surface modification by grafting. The overall aim is the preparation of diverse materials by combination of a set of developed tools. Included in the thesis is the synthesis of monolithic media using non-traditional crosslinkers, the characterization of their porous properties and initial testing in reversed-phase chromatographic separation of proteins. The preparation of a library of short polymer chains, telomers, with varied functionality and their characterization is reported. Included in the characterization is the gradient polymer elution chromatography of selected telomers on a monolithic column in capillary format. The technique shows promise as a tool for monitoring of polymerization processes and for the separation of telomers with similar size but different functionalities or characteristics. Finally, the combination of polymeric support materials and the prepared telomer library is used in surface modification. Surface modification is performed onto activated surfaces via a “grafting to” approach. One example is shown, the surface modification of epoxy-modified divinylbenzene particles by attachment of telomer chains introducing ion-exchange functionality. The material is tested for the separation of proteins, in ion-exchange chromatography mode.
180

Novel Fluorous Hybrid Surface Modification Characterized by Wetting Dynamics, Morphology and Nanomechanics

Nair, Sithara 01 January 2012 (has links)
The surface response of a polymer substrate to external stimuli such as initial wetting is controlled by the outermost molecular layer. Thus, changes on the nanoscale may be engaged to control macroscale wetting behavior. Our work has predominantly focused on surface modification of conventional polyurethane coatings (HMDI-BD-PTMO). Studies on network constrained phase separation and facile polydimethylsiloxane surface functionalization led to the discovery of a simpler one-step and more general approach to functional polymer surfaces that we have designated as “Bottle-Brush Nanoglass” (BB-NG) after the two principle components: (a) a polyoxetane soft block “spine” with side chain “A” bristles and triethoxysilyl chain ends and (b) an alkoxysilane that together with BB chain ends comprise precursors to a “nanoglass”, NG phase. This paper focuses on the extent of modification for a conventional aliphatic polyurethane using a range of fluoropolyoxetane (poly(trifluoroethoxymethyl-methyl oxetane) diol) or 3F diol based modifier concentrations. Upon generating a blend of the polyurethane with the modifier, the BB-NG which is a minor constituent of the blend, phase separates to provide the topmost layer of the coating. Initial results demonstrate that the modified polymer coatings exhibit an expected increase in contact angles with water. Wetting behavior was characterized using the sessile drop technique as well as Dynamic Contact Analysis (DCA, Wilhelmy Plate). Surface composition as well as near surface topology and morphology are characterized by X-ray Photoelectron Spectroscopy (XPS) and Tapping Mode Atomic Force Microscopy (TM-AFM) respectively. Contrast in phase images reflect the surface modulus and viscoelasticity, from which physical form or compositional differences may be deduced. These characteristics have also been explored in our study by hardness tests via nanoindentation.

Page generated in 0.1128 seconds