• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 16
  • 14
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

First-principles Study Of Gaas/alas Nanowire Heterostructures

Senozan, Selma 01 September 2012 (has links) (PDF)
Nanowire heterostructures play a crucial role in nanoscale electronics, i.e., one-dimensional electronics derives benefits from the growth of heterostructures along the nanowire axis. We use first-principles plane-wave calculations within density functional theory with the localized density approximation (LDA) to get information about the structural and electronic properties of bare and hydrogen passivated GaAs/AlAs nanowire heterostructures. We also take into account the reconstruction of the nanowire surfaces. Modeled nanowire heterostructures are constructed using bulk atomic positions along [001] and [111] direction of zinc-blende structures and cutting out wires from this GaAs/AlAs heterostructure crystal with a diameter of 1 nm. We study for the effects of the surface passivation on the band gap and the band offsets for the planar GaAs/AlAs bulk heterostructure system and GaAs/AlAs nanowire heterostructure system. It is possible to control the potential that carriers feel in semiconductor heterostructures. For the planar lattice-matched heterostructures, the macroscopic average of potential of the two materials is constant far from the interface and there is a discontinuity at the interface depending on the composition of the heterostructure. In order to obtain the valence band offset in the heterostructure system, the shift in the macroscopic potential at the interface and the difference between the valence band maximum values of the two constituents must be added. In nanoscale heterostructures, the potential profile presents a more complex picture. The results indicate that while the discontinuity remains close to the planar limit right at the interface, there are fluctuations on the average potential profile beyond the interface developed by the inhomogeneous surface termination, that is, there are variations of the band edges beyond the interface. We report a first-principles study of the electronic properties of surface dangling-bond (SDB) states in hydrogen passivated GaAs/AlAs nanowire heterostructures with a diameter of 1 nm, where the SDB is defined as the defect due to an incomplete passivation of a surface atom. The charge transition levels of SDB states serve as a common energy reference level, such that charge transition level value for group III and V atoms is a constant value and a periodic table atomic property. We have carried out first-principles electronic structure and total energy calculations of aluminum nanowires for a series of different diameters ranging from 3 Angtrom-10 Angstrom, which is cut out from a slab of ideal bulk structure along the [001] direction. First-principles calculations of aluminum nanowires have been carried out within the density-functional theory. We use the norm-conserving pseudopotentials that are shown to yield successful results for ultrathin nanowire regime. Our results show that the number of bands crossing the Fermi level decreases with decreasing wire diameter and all wires studied are metallic.
12

Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells

Joel, Jonathan January 2014 (has links)
In this thesis, a novel method of reducing the rear surface recombination in copper indium gallium (di) selenide (CIGS) thin film solar cells, using atomic layer deposited (ALD) Al2O3, has been evaluated via qualitative opto-electrical characterization. The idea stems from the silicon (Si) industry, where rear surface passivation layers are used to boost the open-circuit voltage and, hence, the cell efficiency. To enable a qualitative assessment of the passivation effect, Al/Al2O3/CIGS metal-oxide-semiconductor (MOS) devices with 3-50 nm oxide thickness, some post-deposition treated (i.e. annealed), have been fabricated. Room temperature capacitance-voltage (CV) measurements on the MOS devices indicated a negative fixed charge density (Qf) within the Al2O3 layer, resulting in a reduced CIGS surface recombination due to field effect passivation. After annealing the Al2O3 passivation layers, the field effect passivation appeared to increase due to a more negative Qf. After annealing have also indications of a lower density of interface traps been seen, possibly due to a stronger or activated chemical passivation. Additionally, the feasibility of using ALD Al2O3 to passivate the surface of CIGS absorber layers has also been demonstrated by room temperature photoluminescence (PL) measurements, where the PL intensity was about 20 times stronger for a structure passivated with 25 nm Al2O3 compared to an unpassivated structure. The strong PL intensity for all passivated devices suggests that both the chemical and field effect passivation were active, also for the passivated as-deposited CIGS absorbers.
13

PECVD silicon nitride for n-type silicon solar cells

Chen, Wan Lam Florence, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The cost of crystalline silicon solar cells must be reduced in order for photovoltaics to be widely accepted as an economically viable means of electricity generation and be used on a larger scale across the world. There are several ways to achieve cost reduction, such as using thinner silicon substrates, lowering the thermal budget of the processes, and improving the efficiency of solar cells. This thesis examines the use of plasma enhanced chemical vapour deposited silicon nitride to address the criteria of cost reduction for n-type crystalline silicon solar cells. It focuses on the surface passivation quality of silicon nitride on n-type silicon, and injection-level dependent lifetime data is used extensively in this thesis to evaluate the surface passivation quality of the silicon nitride films. The thesis covers several aspects, spanning from characterisation and modelling, to process development, to device integration. The thesis begins with a review on the advantages of using n-type silicon for solar cells applications, with some recent efficiency results on n-type silicon solar cells and a review on various interdigitated backside contact structures, and key results of surface passivation for n-type silicon solar cells. It then presents an analysis of the influence of various parasitic effects on lifetime data, highlighting how these parasitic effects could affect the results of experiments that use lifetime data extensively. A plasma enhanced chemical vapour deposition process for depositing silicon nitride films is developed to passivate both diffused and non-diffused surfaces for n-type silicon solar cells application. Photoluminescence imaging, lifetime measurements, and optical microscopy are used to assess the quality of the silicon nitride films. An open circuit voltage of 719 mV is measured on an n-type, 1 Ω.cm, FZ, voltage test structure that has direct passivation by silicon nitride. Dark saturation current densities of 5 to 15 fA/cm2 are achieved on SiN-passivated boron emitters that have sheet resistances ranging from 60 to 240 Ω/□ after thermal annealing. Using the process developed, a more profound study on surface passivation by silicon nitride is conducted, where the relationship between the surface passivation quality and the film composition is investigated. It is demonstrated that the silicon-nitrogen bond density is an important parameter to achieve good surface pas-sivation and thermal stability. With the developed process and deeper understanding on the surface passivation of silicon nitride, attempts of integrating the process into the fab-rication of all-SiN passivated n-type IBC solar cells and laser doped n-type IBC solar cells are presented. Some of the limitations, inter-relationships, requirements, and challenges of novel integration of SiN into these solar cell devices are identified. Finally, a novel metallisation scheme that takes advantages of the different etching and electroless plating properties of different PECVD SiN films is described, and a preliminary evalua-tion is presented. This metallisation scheme increases the metal finger width without increasing the metal contact area with the underlying silicon, and also enables optimal distance between point contacts for point contact solar cells. It is concluded in this thesis that plasma enhanced chemical vapour deposited silicon nitride is well-suited for n-type silicon solar cells.
14

Study of Charges Present in Silicon Nitride Thin Films and Their Effect on Silicon Solar Cell Efficiencies

January 2013 (has links)
abstract: As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
15

Development of a Diffused Junction Silicon Solar Cell Pilot Line

January 2014 (has links)
abstract: In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction, screen-printed silicon solar cells are expounded upon. An experiment is conducted in which the thickness of a PECVD deposited anti-reflection coating (ARC) is varied across several samples and modeled as a function of deposition time. Using this statistical model in tandem with reflectance measurements for each sample, the ARC thickness is optimized to increase light trapping in the solar cells. A response surface model (RSM) experiment is conducted in which 3 process parameters are varied on the PECVD tool for the deposition of the ARCs on several samples. A contactless photoconductance decay (PCD) tool is used to measure the dark saturation currents of these samples. A statistical analysis is performed using JMP in which optimum deposition parameters are found. A separate experiment shows an increase in the passivation quality of the a-SiNx:H ARCs deposited on the solar cells made on the line using these optimum parameters. A RSM experiment is used to optimize the printing process for a particular silver paste in a similar fashion, the results of which are confirmed by analyzing the series resistance of subsequent cells fabricated on the line. An in-depth explanation of a more advanced analysis using JMP and PCD measurements on the passivation quality of 3 aluminum back-surface fields (BSF) is given. From this experiment, a comparison of the means is conducted in order to choose the most effective BSF paste for cells fabricated on the line. An experiment is conducted in parallel which confirms the results via Voc measurements. It is shown that in a period of 11 months, the pilot line went from producing a top cell efficiency of 11.5% to 17.6%. Many of these methods used for the development of this pilot line are equally applicable to other cell structures, and can easily be applied to other solar cell pilot lines. / Dissertation/Thesis / M.S. Electrical Engineering 2014
16

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

John, Sween 05 1900 (has links)
This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ZnO by hydrogel increases the radiative efficiency of this hybrid colloidal material system thereby contributing to enhanced emission.
17

Surface Passivation of CIGS Solar Cells by Atomic Layer Deposition

Motahari, Sara January 2013 (has links)
Thin film solar cells, such as Cu(In,Ga)Se2, have a large potential for cost reductions, due to their reduced material consumption. However, the lack in commercial success of thin film solar cells can be explained by lower efficiency compared to wafer-based solar cells. In this work, we have investigated the aluminum oxide as a passivation layer to reduce recombination losses in Cu(In,Ga)Se2 solar cells to increase their efficiency. Aluminum oxides have been deposited using spatial atomic layer deposition. Blistering caused by post-deposition annealing of thick enough alumina layer was suggested to make randomly arranged point contacts to provide an electrical conduction path through the device. Techniques such as current-voltage measurement, photoluminescence and external quantum efficiency were performed to measure the effectiveness of aluminum oxide as a passivation layer. Very high photoluminescence intensity was obtained for alumina layer between Cu(In,Ga)Se2/CdS hetero-junction after a heat treatment, which shows a reduction of defects at the absorber/buffer layers of the device.
18

Enhancement of Carrier Lifetimes in SiC and Fabrication of Bipolar Junction Transistors / SiCのキャリア寿命向上およびバイポーラトランジスタの作製

Okuda, Takafumi 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19312号 / 工博第4109号 / 新制||工||1633(附属図書館) / 32314 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 引原 隆士, 准教授 船戸 充 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
19

Advanced rear contact design for CIGS solar cells

De Abreu Mafalda, Jorge Alexandre January 2019 (has links)
The current trend concerning the thinning of solar cell devices is mainly motivated by economic aspects, such as the cost of the used rare-earth elements, and by the requirements of emergent technologies. The introduction of ultra-thin absorber layers results in a reduction of used materials and thus contributes to a more cost-effective and time-efficient production process.However, the use of absorber layers with thicknesses below 500nm gives rise to multiple apprehensions, including concerns regarding light management and the absorber’s quality.Therefore, this experimental work presents a novel solar cell architecture that aims to tackle the issues of optical and electrical losses associated with ultra-thin absorber layers. To that end, a Hafnium Oxide (H f O2) rear side passivation layer was introduced in-between the copper indium gallium (di)selenide Cu(In, Ga)Se2, CIGS-based absorber layer and the Molybdenum (Mo) back contact. Then, the proposed Potassium Fluoride (KF) alkali treatment successfully established point contacts on the ALD-deposited oxide layer, resulting in a passivation effect with minimum current blockage.The established cell architecture showed significant improvements regarding both open circuit voltage (Open-Circuit Voltage (Voc)) and efficiency when compared to unpassivated reference devices. The used solar cell simulator (SCAPS) attributes the observed improvements to a reduced minority carrier recombination velocity at the rear side of the device. Moreover, the provided photoluminescence (PL) results report a higher peak intensity and lifetime for passivated devices.Furthermore, the overlay of the given external quantum efficiency (EQE) spectra with the performed simulations show that the HfO2 passivation layer improves the optical reflection from the rear contact over a wavelength interval ranging from 500 to 1100 nm, resulting in a short circuit current (Jsc) improvement. An increased quantum efficiency observed throughout almost the entire measurement range, confirms that the enhance in Jsc is also due to electronic effects.Here, a produced solar cell device including a 3nm-thick HfO2 rear passivation layer and a 500nm-thick 3-stage CIGS absorber, achieved a conversion efficiency of 9.8%.Further, the approach of combining an innovative rear surface passivation layer with a fluoride-based alkali treatment resulted in the development and successful characterisation of a 1-stage, 8.6% efficient solar cell. Such result, mainly due to a short circuit current (Jsc) enhancement, supports the introduction of more straightforward production steps, which allows a more cost-effective and time-efficient production process. The produced device consisted of a 500nm-thick CIGS absorber, rear passivated with an ultra-thin (2nm) HfO2 layer combined with a 0.6M KF treatment. / Den nuvarande trenden när det gäller solcellsanordningar huvudsakligen motiveras av ekonomiska aspekter, såsom kostnaden för att använda sällsynta jordartsmetaller, och av kraven i ny teknik. Införandet av ultratunna absorptionsskikt resulterar i en minskning av använda material och bidrar därmed till en mer kostnadseffektiv och tidseffektiv produktionsprocess.Användningen av absorptionsskikt med tjocklekar under 500 nm ger emellertid upphov till flera bekymmer, beträffande ljushantering och absorptorkvalitet.Därför presenterar detta experimentella arbete en ny solcellarkitektur som syftar till att ta itu med frågorna om optiska och elektriska förluster förknippade med ultratunna absorberlager. För detta ändamål infördes ett Hafnium Oxide (H f O2) bakre sidopassiveringsskikt mellan kopparindiumgallium (di) selenid Cu(In, Ga)Se2, CIGSbaserat absorberande skikt och Molybdenum (Mo) kontakt. Sedan upprättade den föreslagna kaliumfluorid (KF) alkali-behandlingen framgångsrikt punktkontakter på det ALD-avsatta oxidskiktet, vilket resulterade i en passiveringseffekt med minimal strömblockering.Den etablerade cellarkitektur visade signifikanta förbättringar avseende både öppna kretsspänningen (Voc) och effektivitet i jämförelse med opassiverad referensanordningar. Den använda solcellsimulatorn (SCAPS) tillskriver de observerade förbättringarna till en minskad minoritetsbärares rekombinationshastighet på enhetens baksida. Dessutom de tillhandahålls fotoluminescens (PL) resultat rapporterar en högre toppintensitet och livslängd för passive enheter.Dessutom visar överläggningen av det givna externa kvantitetseffektivitetsspektrumet (EQE) med de utförda simuleringarna att passiveringsskiktet HfO2 förbättrar den optiska reflektionen från den bakre kontakten över ett våglängdsintervall från 500 till 1100 nm, vilket resulterar i i en kortslutningsström (Jsc) förbättring. En ökad kvantverkningsgrad observerats i nästan hela mätområdet, bekräftar att öka i Jsc är också på grund av elektroniska effekter.Här, en producerad solcellsanordning innefattande en 3 nm-tjock HfO2 bakre passiveringsskikt och ett 500 nm-tjock 3-stegs CIGS absorber, uppnått en omvandlingseffektivitet på 9.8%.Vidare resulterade tillvägagångssättet att kombinera ett innovativt bakre ytpassiveringsskikt med en fluoridbaserad alkalibehandling i utvecklingen och framgångsrik karaktärisering av en 1-stegs, 8.6% effektivitet solcell. Ett sådant resultat, främst på grund av en kortslutningsström (Jsc) förbättring, stöder införandet av mer enkla produktionssteg, vilket möjliggör en mer kostnadseffektiv och tidseffektiv produktionsprocess. Den framställda anordningen bestod av ett 500 nm-tjock CIGS absorber, bakre passiverad med en ultra-tunn (2 nm) HfO2-skikt kombineras med en 0.6M KF behandling.
20

Morphology and Surface Passivation of Colloidal PbS Nanoribbons

Antu, Antara Debnath 02 August 2017 (has links)
No description available.

Page generated in 0.125 seconds