• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 84
  • 30
  • 19
  • 14
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 570
  • 570
  • 388
  • 87
  • 81
  • 76
  • 75
  • 75
  • 69
  • 64
  • 62
  • 56
  • 50
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Fiber Loop Ringdown for Physical and Chemical Sensors and Sensing

Ghimire, Maheshwar 04 May 2018 (has links)
Optical fibers are getting significant considerations in the field of the sensors and sensing beyond its applications in optical communications. Because of several advantages, e.g., low profile of the sensors, immunity to electromagnetic noises, the ability of multiplexing, etc., the use of the fiber optic sensor is increasing in the field of physical, chemical, and biomedical sensing. In this study, we have developed two new fiber optic sensors based on fiber loop ringdown technique (FLRD) and have demonstrated their applications in the field of sensing. In the first part of this study, we report on the development of a high-sensitivity FLRD strain sensor. For the design of the strain sensor, the fiber loop was cut at the middle, and then the two fiber ends from broken fiber loop were cleaved and aligned carefully to couple the light from one end to another end. Any strain during the measurement changes the alignment of the fiber ends, consequently, the ringdown time changes. With this scheme, the FLRD strain sensor has shown the strain detection limit of 65 nanostrain, which is five times better than any FLRD strain sensors reported in the literature. Furthermore, The FLRD strain sensors were successfully embedded into prestressed concrete-beams.The FLRD strain sensor was able to monitor stress on a post-tensioned rod, as well as the load applied on the concrete-beam during the three-point loading test, thus exhibiting immense potential in structural health monitoring. For the chemical sensor, a new scheme of interrogation for a fiber optic surface plasmon sensor was developed with the use of the FLRD technique. A gold nanolayer was deposited on an uncladded fiber section, and the fiber section was integrated into the FLRD system as a sensor head. The gold layer facilitates for increased interaction of sample of interest, with the light pulse confined in the fiber waveguide. Moreover, with the affinity of the gold with specific biomolecules, the sensor has the potential for applications in biochemical sensing. In the experiment, the SP-FLRD sensor was used for refractive index sensing, and index detection limit of 4.6×10-5 RIU was achieved.
242

BORONIC ACID MACROLIGANDS FOR GLYCOMICS APPLICATIONS

PINNAMANENI, POORNIMA 14 September 2012 (has links)
No description available.
243

Investigation of New Nanomaterials for Sensor Applications and Property Enhancement

Bachus, Matthew J. 06 August 2012 (has links)
No description available.
244

A Chemical Free Approach for Increasing the Biochemical Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensing Capabilities of Colloidal Silver Nanoparticles

Dorney, Kevin Michael 29 May 2014 (has links)
No description available.
245

Development of a Wearable Noninvasive Biomarker Sensing Platform

Gupta, Niraj Kumar January 2017 (has links)
No description available.
246

Investigation of Photochemical Upconversion Based on Triplet-Triplet Annihilation

Cao, Xian 26 May 2016 (has links)
No description available.
247

A BIOPHYSICAL CHARACTERIZATION OF PROTEIN-LIPID INTERACTIONS OF THE LIPID DROPLET BINDING PROTEIN, PERILIPIN 3

Rathnayake, Sewwandi S. 01 August 2016 (has links)
No description available.
248

Fundamentals and Applications of Visible Plasmonics: from Material Search to Photoluminescence Enhancement / 可視プラズモニクスの基礎と応用:物質探索から発光増強まで

Takekuma, Haruka 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24074号 / 理博第4841号 / 新制||理||1692(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 島川 祐一, 教授 倉田 博基 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
249

Design and Analysis of Optical Directional Coupler and Long-range Surface Plasmon Biosensors with Applications

Al-Bayati, Ahmed Mohammed 15 September 2022 (has links)
No description available.
250

Electron Energy Loss Spectroscopy of Metallic Nanostructures and Carbon Nanotubes

Rossouw, David 01 September 2014 (has links)
<p>In this thesis, a modern transmission electron microscope is used to perform high-resolution electron energy loss studies of metallic nanostructures and carbon nanotubes.</p> <p>The remarkable optical properties of metallic nanostructures arise from the excita- tion of surface plasmons. With improved instrumentation, surface plasmon resonances are imaged in a variety of nanostructures, enabling a greater understanding of their behaviour in nanoscale systems. It is shown that surface plasmons set up multiple high order resonances in silver nanorods, and they freely propagate around sharp corners in silver nanowires. It is also demonstrated that silver nanorice structures resonate in a similar manner to nanorods, despite the high density of stacking faults in the structure. Finally, a complementary structural pair is found to resonate in a complementary fashion, in agreement with Babinet’s principle.</p> <p>Carbon nanotubes exhibit unique physicochemical properties that have led to their use in a variety of novel materials science applications. Despite rapid progress in the theoretical and experimental investigation of carbon nanotubes, techniques capable of studying the structural and electronic properties of individual tubes are limited. Here, it is demonstrated that the spectral signature of carbon can be used to identify the electronic character of individual single-walled carbon nanotubes. In addition, a new technique is used to map bonding anisotropy in a multi-walled carbon nanotube.</p> <p>Also presented in this thesis is the design and construction of a unique laser-TEM system. Early results from the system include in-situ measurements of laser-induced structural and electronic distortions in individual carbon nanotubes.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0655 seconds