• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 47
  • 30
  • 17
  • 15
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 373
  • 373
  • 111
  • 78
  • 59
  • 48
  • 41
  • 37
  • 33
  • 30
  • 28
  • 27
  • 26
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Využití spektrofotometrie pro stanovení reziduí léčiv ve vodách / Application of spectrophotometry for determination of drug residua in waters

Čapka, Lukáš January 2008 (has links)
Residua of pharmaceuticals represent biologically active compounds which can interfere with some purification processes in WWTP. Control laboratories of many WWTP and water works are equipped with UV-VIS spectrophotometers. Therefore, the main goal of this thesis was the elaboration of the method for the determination of selected drugs in water based on the VIS spectrophotometry.
132

Monitoring kontaminace vody a sedimentů / Monitoring of water and sediment contamination

Grajciariková, Eva January 2011 (has links)
The diploma thesis is focused on the issue of the presence of POPs in the surface water and sediments. Monitored compounds were chosen from the group of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE). Samples were collected in selected localities in the Slovak and the Czech Republic. Selected analytes were extracted with hexane from the aqueous matrix. Analytes were isolated by the ultrasonic extraction using a solvent mixture of hexane-dichlormethane from the solid matrix and the resulting extract was cleaned up by the column chromatography filled with the florisil and the silica gel. Target compounds were analysed by GC/ECD finally. Obtained results show the level of contamination in selected localities in the Slovak and the Czech Republic.
133

Estimating Risks of Pharmaceutical NSAID Mixtures in Surface Waters through Risk Cups : – Implications for Sustainability

Mandahl, Per January 2020 (has links)
Background: Use of pharmaceuticals can lead to unchanged or metabolite residues in surface water that may result in negative environmental effects. Sweden has adopted the Generational goal defining direction and changes needed to become a sustainable nation, these align with the UN Sustainable Development Goals (SDGs). Sweden collects and analyzes samples for pharmaceuticals and other contaminants in surface water. Aim: To estimate risks connected to pharmaceuticals in complex mixtures, exemplified by nonsteroidal anti-inflammatory drugs (NSAIDs), and discuss how this can be used to influence the actions needed to reach the Generational goal and the SDGs of Agenda 2030. Methods: Here, measured environmental concentrations (MECs) of the NSAIDs diclofenac, ibuprofen, ketoprofen, and naproxen in Swedish surface waters and in Uppsala’s Fyris River were accessed from a database and used in conjunction with predicted no-effect concentrations (PNECs) from the literature to derive risk quotients(RQ=MEC/PNEC). For all drugs a standardized PNEC derived from OECD guideline base-set tests were found, and for diclofenac and ibuprofen also non-traditional guideline PNECs were identified. Risk cups applied by summation of MEC/PNEC-risk quotients are considered safe if the sum of RQ <1, and as proposed inSOU 2019:45, if one chemical adds more risk than 0.1 to the risk cup it would be better to substitute it for another, if possible. Results and Discussion: Standardized PNECs derived from OECD guideline base-set tests were more than 60-fold greater than non-traditional PNECs for diclofenac and ibuprofen, affecting their individual RQ contribution and total sum of RQ. Based on the non-traditional PNECs, the sum of RQ were more than or near 1 in some cases in Fyris River and elsewhere, thus indicating risk to biota especially in 2010. Diclofenac and ibuprofen typically contributed more to Risk cups than did ketoprofen and naproxen. Especially diclofenac should be considered for substitution, if possible. Swedish sales data indicate at least one more NSAID compound suitable for analysis. In addition, more than 70 pharmaceuticals were identified in Fyris River, adding to pressure on environment from NSAIDs. Risk cups are conservative and require sparse data relative to other methods, and thus can be used to prioritize further efforts. A difficulty is to find relevant ecotoxicological data for pharmaceuticals and therefore an open access database would be of value, preferably complemented with sales data for APIs. However, since a default RQ-value of 0.1 was suggested in SOU 2019:45, a lack of data would not hinder action. Use of risk cups makes it possible to work toward e.g., sustainable production practices benefiting SDG 12. Inaction after identifying a problem conflicts with SDGs 6 and 12, since it would lead to less clean water and more sanitation issues and non-sustainable consumption and production. Conclusion: Risk cups as applied here are suitable as a first tier of pharmaceutical mixture risk estimation since they are quick to perform and demand less data than other methods. Because of their dependence on PNECs, it is important to use a relevant effect test, with results preferably published in an open access database. Diclofenac’s non-traditional risk quotient indicate that the ecological status of the Fyris River is at risk, supporting the official moderate ecological status classification. This thesis suggests an additional NSAID, etoricoxib, as a possible candidate for future studies, based on the number of other NSAIDs on the market and sales numbers, pointing at the usefulness of sales data for a better understanding of risk. In addition to the NSAID group, other pharmaceuticals, active metabolites, and non-pharmaceutical chemicals add to the pressure on the environment. Data on the risk cups and risk quotients can be used as a basis for improvements at sewage treatment plants and factories as well as for launching informative campaigns to physicians and the general public, actions which all may lead to a more sustainable future.
134

Razvoj inovativne optičke senzorske tehnologije za hemijsku analizu neorganskih polutanata u akvatičnom medijumu / Development of innovative optic sensor technology for chemical analysis of inorganic pollutants in aquatic medium

Obrovski Boris 03 July 2020 (has links)
<p>Osnovni cilj teze bio je razvoj nove i inovativne senzorske metode za merenje neorganskih parametara u površinskim vodama i vodama zatvorenih bazena. Kolorimetriski fiber-optički senzor (KFOS) je osposobljen za merenje pet parametara u površinskoj vodi (ortofosfata, ukupnog hlora, hroma (VI), nitrita i sulfata) i za merenje dva parametra u bazenskim vodama (rezidualnog hlora i ukupnog hlora). Pored prilagođavanja nove metode urađena je i analiza kvaliteta reke Dunav u Novom Sadu na osnovu čega su odabrani parametri za merenje sa KFOS metodom.</p> / <p>The main goal of the thesis was to develop a new and innovative sensor method for measuring inorganic parameters in surface waters and waters of indoor pools. The Colorimetric Fiber Optic Sensor (CFOS) is capable for measuring five parameters in surface water (orthophosphate, total chlorine, chromium (VI), nitrite and sulfate) and for measuring two parameters in pool water (residual chlorine and total chlorine). In addition to adjusting the new method, an analysis of the quality of the Danube River in Novi Sad was performed and based on which parameters for measuring with the KFOS method were selected.</p>
135

The impact of gold and coal mine residue on water resources in the Roodepoort and Newcastle areas

Morokane, Tebogo Molefe Shadrack 08 May 2012 (has links)
Large quantities of tailings are produced during gold and coal mining activities. These tailings consist of ash dumps, waste rock dumps, in-pit deposits and any other heap, pile or accumulation of residue in the tailings or slimes dams. It has been reported that these tailings can have a significant impact on water quality in the vicinity of gold and coal residues in South Africa. Water quality deterioration in the vicinity of gold and coal mines in the Johannesburg and other areas has been reported. However, little information is available on the potential impact of residues on water quality near Roodepoort and Newcastle where gold and coal, respectively, are mined. The objective of this investigation was therefore to determine the potential impact of gold and coal mine residues on the environment in the vicinity of Roodepoort and Newcastle. Secondary objectives were to identify the metal constituents of gold and coal mine residues, to evaluate and define the current knowledge with regard to the short-term water quality impact of gold and coal residues in terms of concentration of metals leaching from the residues, to assess the potential impact of gold and coal tailings on the water environment within the study areas and to suggest methods to prevent pollution from taking place. Acid Base Accounting (ABA), Toxicity Characteristics Leaching (TCLP), Acid Rain Leaching Procedure (ARLP) and Inductively Plasma Coupled – Mass Spectrometry (IPC-MS) were used as tools to determine the potential impact of gold and coal tailings on the environment. Acid Base Accounting comprises two components that show the potential of the mine residue to produce acid mine drainage, that is, the total sulphur and the net neutralisation potential (NNP). It has been reported that any pyrite mine residue containing more than 0.5% total sulphur may generate acid mine drainage. Mine residues with a net neutralisation potential of less than zero ppt CaCO3 produce acid drainage. The acid base accounting results show that the gold and coal mine residues contain sulphur which has the potential to produce acid mine drainage. Lithium (Li), sodium (Na) magnesium (Mg), aluminium (Al), potassium (K), calcium (Ca), iron (Fe), manganese (Mn) and nickel (Ni) were identified to be present in the gold mine residue. The concentrations of some of the metals that leached from the gold residue according to the TCLP tests were as follows: Al (22 mg/L); Ca (242 mg/L); Fe (29 mg/L); Mn (88 mg/L) and Ni (87 mg/L). The metals that leached from the gold residue according to the ARLP results were as follows: Na (43 mg/L); Al (169 mg/L); Ca (246 mg/L); Fe (771 mg/L); Mn (16 mg/L) and Ni (11 mg/L). Higher concentrations of metals generally leached from the gold residue with the ARLP test than with the TCLP test. The sulphate concentration up-stream of the gold residue was determined at 225 mg/L. This concentration increased to 3 490 mg/L at the decanting point and to 11 577 mg/L downstream of the decanting point. The surface and possibly groundwater are therefore polluted with sulphates. Lithium (Li), sodium (Na), magnesium (Mg), aluminium (Al), potassium (K), calcium (Ca), iron (Fe), manganese (Mn) and nickel (Ni) were identified to be present in the coal mine residue. The concentrations of some of the metals that leached from the coal residue according to the TCLP tests were as follows: Al (3 mg/L); Ca (56 mg/L); Fe (0.21 mg/L); Mn (1 mg/L) and Ni (0.082 mg/L). The metals that leached from the coal residue according to the ARLP test results were as follows: Na (3 mg/L); Al (15 mg/L); Ca (136 mg/L); Fe (0.91 mg/L); Mn (1 mg/L) and Ni (0.07 mg/L). Higher concentrations of metals generally leached from the coal residue with ARLP test than with the TCLP test. The sulphate concentration up-stream of the coal residue was determined at 26 mg/L. This concentration increased to 3 615 mg/L at the decanting point and to 6 509 mg/L downstream of the decanting point. The surface and possibly groundwater are therefore polluted with sulphate. The upstream Na (26 mg/L), Ca (41 mg/L), Fe (0,02 mg/L), Mn (3 mg/L) and Ni (0.065 mg/L) concentrations were low in the case of the gold residues. These concentrations at the decanting point were: Na (289 mg/L); Ca (266 mg/L); Fe (0.2 mg/L); Mn (0.01 mg/L) and Ni (2 mg/L). Fifty metres downstream these concentrations were: Na (140 mg/L); Ca (389 mg/L); Fe (722 mg/L); Mn (395 mg/L) and Ni (15 mg/L). There was a significant increase in the metal concentration from up-stream of the gold residue, to the decanting point and further downstream of the gold residue. The surface and possibly ground water are therefore polluted by the metals leaching from the gold residue. The upstream Na (5 mg/L), Ca (8 mg/L), Fe (0,12 mg/L), Mn (0.015 mg/L) and Ni (0.05 mg/L) concentrations were low in the case of the coal residues. These concentrations at the decanting point were: Na (189 mg/L); Ca (337 mg/L); Fe (68 mg/L); Mn (13 mg/L) and Ni (0.06 mg/L). Fifty metres downstream these concentrations were: Na (65 mg/L); Ca (129 mg/L); Fe (0.48 mg/L); Mn (5 mg/L) and Ni (0.06 mg/L). There was a significant increase in the metal concentration from up-stream of the coal residue, to the decanting point and further downstream of the coal residue. The surface and possibly ground water are therefore polluted by the metals leaching from the coal residue. The gold and coal mine residues are polluting the surface and possibly ground water. Therefore, in order to ameliorate the current status within the Roodepoort and Newcastle catchments, mitigation and management measures such as that the residues should be covered and capped with soil material that would prevent infiltration of the oxygen and rain water into the soil, are recommended. A more comprehensive water quality analysis of the surroundings of the residues is also suggested to be able to better quantify the extent of the problem. Copyright / Dissertation (MSc)--University of Pretoria, 2011. / Chemical Engineering / Unrestricted
136

Integrated hydrologic flow characterization of the Krycklan catchment (Sweden).

Jutebring Sterte, Elin January 2016 (has links)
Currently there are urgent water related problems, such as use of groundwater and surface water resources, which need a more integrated view on the hydraulic cycle and how the different processes interact with each other. This has led to new ways of thinking in management of watersheds, which sparked the creation of new integrated tools for flow characterization. Characterization of a watersheds flow is an important step in future research regarding water quality and climate change issues. The Krycklan catchment, located in the northern part of Sweden, has been under research for many years. With a great deal of measurements regarding stream water chemistry as well as climate measurements (evaporation, transpiration and temperature), the catchment has great potential regarding solute transportation and climate change investigation. This thesis was made to aid in future research by characterization of the catchments groundwater and surface flow, by the use of an integrated model software tool, MIKE-SHE. The model have been calibrated and validated with the help of real time observed measurements at Krycklan combined with model data from SMHI:s HYPE-model. Throughout the calibration it was discovered that the hydraulic conductivities were important for the surface and groundwater interaction, regulating base flow as well as peak flows. The shape and timing of the spring flood was also affected by the snow melt while the summer peaks for the upstream rivers, probably due to the relatively large difference in topography elevation, were more affected by the representation of the topography created by the grid size. A smaller grid-size resulted in a finer representation of the topography, which resulted in a quicker runoff to the upstream rivers without an increase of base flow. This gave better fitted hydrographs of the flows in the upstream rivers compared to observed measurements. The final model created was able to capture the discharge-hydrograph and groundwater fluctuations with small error and high correlation coefficients compared to observed data and model data from SMHI. The results as well as the calibration process helped with a deeper understanding of the modeling tool itself as well. Future improvements that can be considered are to introduce new calibration data and the use of an even smaller grid size. This can improve the understanding of the catchment as well as the representation of the flow in the upstream rivers. However, the effects of a smaller grid size must be reflected upon. The model will most likely become more unstable and the run time of the model will greatly increase. One suggestion to solve this issue is to look into a sub-catchment to reduce these complications.
137

Groundwater-stream connectivity from minutes to months across United States basins as revealed by spectral analysis

Clyne, Jacob B. January 2021 (has links)
No description available.
138

Occurrence of organic micropollutants and hormones in Swedish surface water

Forsberg, Malin January 2022 (has links)
The occurrence and source distribution of organic micropollutants (OMPs) have been investigated in Swedish surface waters, in 23 rivers connected to the lakes Vänern, Vättern and Mälaren, 3 Wastewater treatment plants (WWTPs) and 3 Drinking water plants (DWTPs) located in the middle of Sweden was sampled. Compounds such as pharmaceuticals, industrial chemicals, pesticides, personal care products, hormones, Per- and polyflouroalkyl substances (PFASs), isoflavones, stimulants and parabens were selected. The analysis was done by using solid phase extraction (SPE) and Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Of the 121 studied compounds 91 was detected in concentration levels varying between a few ng/L up to 160 µg/L in wastewater effluent. The detected concentrations of 80 compounds in surface water from rivers varied from low ng L-1up to 3.3 µg/L, 43 OMPs within the range from low ng/L up to 370 ng/ L could be detected in the lakes and 35 OMPs could be found in levels from low ng/L up to 2.9 µg/L in the drinking water. The number of detected compounds and concentration levels clearly decreases from wastewater influent to effluent, rivers, lakes and lastly to drinking water. The concentration levels of OMPs in the surface water samples varied between sampling sites and the three lakes making it clear that Lake Mälaren is the most contaminated one out of these three. OMPs such as antibiotics, antidepressants and personal care products were most frequently detected in all samples. The highest total OMP concentration levels were found in Enköping river (79 µg/L), Lövsta river (33 µg/L), Ösan (16 µg/L) and Lillån (13 µg/L). A risk assessment for drinking water with regard to human health was conducted for two compounds by calculating the Benchmark Quotient (BQ) using drinking water equivalent levels (DWELs). Two compounds, carbamazepine and bezafibrate, was selected based on detection frequency and available toxicity data. While bezafibrate didn’t show any indications of risk to human health, carbamazepine had a BQ of 1.47 which indicates a risk to human health when humans are exposed to these concentration levels over a period of a lifetime. / Genom att använda en målanalys har förekomsten och fördelningen av organiska mikroföroreningar i svenska ytvatten studerats. Vattenprover från 23 vattendrag som antingen mynnar ut i eller börjar i någon av sjöarna Vänern, Vättern eller Mälaren, tre avloppsreningsverk och tre dricksvattenverk i mellersta Sverige har samlats in. Ämnen så som läkemedel, industriella kemikalier, pesticider, hudvårdsprodukter, hormoner, högflorerade ämnen (PFAS), isoflavoner, stimulanter och parabener valdes ut och analyserades med hjälp av fastfasextraktion och vätskekromatografi kopplad till masspektrometer (UPLC-MS/MS).Av de 121 utvalda ämnena kunde 91 av dessa detekteras i koncentrationer som varierade mellan några få ng L-1upp till 160 µg/L i utgående avloppsvatten. I vattendragen kunde 80 av de organiska mikroföroreningarna detekteras i koncentrationer mellan låga ng/L upp till 3.3 µg/L medan endast 43 kunde detekteras i sjöarna inom koncentrationsintervallet låga ng/L till 370 ng/L. Slutligen detekterades 29 mikroföroreningar i dricksvattnet där koncentrationerna varierade mellan några få ng/L upp till 2.9 µg/L. Resultatet visar att antalet detekterade organiska mikroföroreningar och deras respektive koncentrationer tydligt minskar vid jämförelse av de olika matriserna från ingående avloppsvatten till utgående, vattendrag, sjöar och slutligen i dricksvattnet. I ytvattenproverna varierade koncentrationsnivåerna av organiska mikroföroreningar mellan de olika vattendragen och det var tydligt att Mälaren är mer kontaminerad än Vänern och Vättern. Det gick också att se tydliga trender i vilka ämnen som vanligen detekterades i de olika proverna, särskilt bland läkemedlen då ämnen som är antibiotika-klassade eller hör till gruppen antidepressiva var vanligast förekommande. De högsta totala koncentrationerna av organiska mikroföroreningar kunde hittas i Enköpingsån (79 µg/L), Lövstaån (33 µg/L), Ösan (16 µg/L) samt Lillån (13 µg/L). Dessa fyra vattendrag är därmed de mest förorenade i denna studie och kan därför ses som särskilt förorenade. En riskanalys med hänsyn till människors hälsa gjordes på dricksvattnet genom att beräkna en referenskvot (BQ) med hjälp av ekvivalenta dricksvatten-nivåer (DWELs). De två ämnena karbamazepin och bezafibrat valdes på grund av deras detektionsfrekvens (FD) och tillgänglighet av toxicitetsdata. Bezafibrat visade ingen potentiell risk medan karbamazepin hade ett BQ-värde på 1,47 vilket indikerar en potentiell risk till människors hälsa om man utsätts för de funna koncentrationerna under hela sin livstid.
139

Characterization of flowpaths to improve the prediction of vegetation impacts on hydrological processes in semi-arid mountainous catchments of the Cape Fold Belt

Jumbi, Faith Tatenda January 2021 (has links)
Philosophiae Doctor - PhD / Mountainous areas are important water sources in many landscapes. An understanding of how mountainous catchments function is important particularly in semi-arid areas, where water shortages are prevalent. In addition to climate and physiographic factors, the hydrological responses of mountainous catchments can be influenced by land uses and land cover types. Although the general effects of land use and land cover types on hydrological processes are known, prediction of the specific effects in a given catchment is still problematic. This study characterized flowpaths, and hydrological responses to different land cover types in a semi-arid, mountainous Kromme River catchment (Eastern Cape province of South Africa), located in the Cape Fold Mountains of the Table Mountain Group (TMG) geological region.
140

Groundwater and Surface Water Contributions to Metals Loading in Bayhorse Creek at the Abandoned Ramshorn Mine Site Near Bayhorse, Idaho

McDonough, Hannah L. 01 May 2015 (has links)
Many abandoned mines in the United States are littered with waste metals that leach into watersheds and degrade habitats. Although metals-laden waters may appear pristine, fish bioaccumulate high concentrations of metals in their tissues, which create health risks if consumed by humans. This study examines the source and fate of metals in Bayhorse Creek near the abandoned Ramshorn mine outside of Challis, Idaho. In 2003, the U.S. Geological Survey found high levels of arsenic, cadmium, chromium, copper, lead, silver, and zinc in soils adjacent to the tailings pile. The Idaho Department of Environmental Quality authorized remediation to begin in summer 2011 without fully comprehending the source and fate of contaminants into the creek. Metals loads were determined along the reach of Bayhorse Creek adjacent to the mine by measuring the flow rates of streams and groundwater seeps, and collecting water samples for chemical analysis. The chemical controls on metals mobility and attenuation in the surface and groundwater at the site were determined by computer modeling, a diffuse double-layer surface complexation model and the geochemical program PHREEQC. Dissolved and suspended arsenic, copper, iron, manganese, lead, and zinc load the creek. The lowest site along the creek consistently measured as the highest load. Arsenic, copper, and lead loads were relatively insignificant compared to iron and manganese. The results indicate that 47% or more of the iron and manganese travel as metal-oxides, and arsenic and zinc tend to sorb to ferrous oxides. Large metals fluxes between SW-1 and SW-5 and at SW-8 suggest tailings and waste rock located between SW-1 and SW-5 and the slag pile adjacent to SW-8 are the main sources of metals contamination. Concentrations below the EPA drinking water standards and the absence of acidic pH indicate that the main metals loading consists of safe levels of iron, manganese, and zinc.

Page generated in 0.048 seconds