121 |
Towards an access economy model for industrial process controlRokebrand, Luke Lambertus January 2020 (has links)
With the ongoing trend in moving the upper levels of the automation hierarchy to the cloud, there
has been investigation into supplying industrial automation as a cloud based service. There are many
practical considerations which pose limitations on the feasibility of the idea. This research investigates
some of the requirements which would be needed to implement a platform which would facilitate
competition between different controllers which would compete to control a process in real-time. This
work considers only the issues relating to implementation of the philosophy from a control theoretic
perspective, issues relating to hardware/communications infrastructure and cyber security are beyond
the scope of this work.
A platform is formulated and all the relevant control requirements of the system are discussed. It is
found that in order for such a platform to determine the behaviour of a controller, it would need to
simulate the controller on a model of the process over an extended period of time. This would require
a measure of the disturbance to be available, or at least an estimate thereof. This therefore increases
the complexity of the platform. The practicality of implementing such a platform is discussed in terms
of system identification and model/controller maintenance. A model of the surge tank from SibanyeStillwater’s Platinum bulk tailings treatment (BTT) plant,
the aim of which is to keep the density of the tank outflow constant while maintaining a steady tank
level, was derived, linearised and an input-output controllability analysis performed on the model.
Six controllers were developed for the process, including four conventional feedback controllers
(decentralised PI, inverse, modified inverse and H¥) and two Model Predictive Controllers (MPC)
(one linear and another nonlinear). It was shown that both the inverse based and H¥ controllers fail to
control the tank level to set-point in the event of an unmeasured disturbance. The competing concept
was successfully illustrated on this process with the linear MPC controller being the most often selected
controller, and the overall performance of the plant substantially improved by having access to more
advanced control techniques, which is facilitated by the proposed platform.
A first appendix presents an investigation into a previously proposed switching philosophy [15] in
terms of its ability to determine the best controller, as well as the stability of the switching scheme. It
is found that this philosophy cannot provide an accurate measure of controller performance owing to
the use of one step ahead predictions to analyse controller behaviour. Owing to this, the philosophy
can select an unstable controller when there is a stable, well tuned controller competing to control the
process.
A second appendix shows that there are cases where overall system performance can be improved
through the use of the proposed platform. In the presence of constraints on the rate of change of the
inputs, a more aggressive controller is shown to be selected so long as the disturbance or reference
changes do not cause the controller to violate these input constraints. This means that switching back
to a less aggressive controller is necessary in the event that the controller attempts to violate these
constraints. This is demonstrated on a simple first order plant as well as the surge tank process.
Overall it is concluded that, while there are practical issues surrounding plant and system identification
and model/controller maintenance, it would be possible to implement such a platform which would
allow a given plant access to advanced process control solutions without the need for procuring the
services of a large vendor. / Dissertation (MEng)--University of Pretoria, 2020. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
|
122 |
Enhancing Coastal Flood Resiliency in Canada Through Hazard and Life Safety AssessmentsKim, Joseph 09 November 2020 (has links)
Home to the world’s longest coastline, Canada has experienced devastating economic
and social from coastal flooding events. While there have been a variety of mitigation
methods employed over the years to increase a community’s resistance to coastal
hazards, it is unrealistic to think that there exists a solution to guarantee a community’s
safety under all possible flood hazards. Instead, the community’s efforts to raise their
resistance to flood hazards should be augmented with careful planning and management to increase a community’s resilience to flood hazards, allowing them to recover quickly after a natural disaster. The first step in elevating a community’s resilience is to better understand the expected hazards that it may experience.
This thesis presents two unique case studies to better understand the flooding hazards present on the Canadian coastline. A large-scale numerical model that accounts for the presence of ice was developed to investigate storm surges in Canada’s western Arctic. It was found that the quality of the climatic forcing data used, ERA5, was poor in capturing peak wind speeds, but could be compensated for by using elevated wind drag coefficients. The use of non-traditional high-water marks such as driftwood lines were validated and were shown to significantly alter expected flood return periods compared to the return periods estimated from only the incomplete tide gauge measurements present on the Arctic coastline.
The second case study extends the results of a tsunami hydrodynamic simulation on
Canada’s Pacific coastline through a life safety assessment. The performance between an agent-based and GIS-based approach to modelling tsunami evacuation were directly compared and were shown to yield different magnitudes in fatality rate and facility demand, but similar trends. Both models agreed on a mitigation option that can significantly reduce the loss of life during a tsunami.
|
123 |
Projection of future storm surges around the Korean Peninsula considering climate change effect / 気候変動を考慮した韓国沿岸における高潮の将来変化予測Yang, Jung-A 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20680号 / 工博第4377号 / 新制||工||1680(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 平石 哲也, 教授 中北 英一, 准教授 森 信人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
124 |
Evaluation of Polymeric MV Power Cable Insulation Condition based on Online Capacitor Switching Transient Voltage MeasurementsPushpanathan, Balaji 09 May 2015 (has links)
The underground power cable failures introduce challenges to the reliability of underground residential distribution networks. Smart Grid initiatives have interest to improve equipment reliability. Asset management of several utilities are interested towards online cable insulation condition monitoring and health index evaluation. This dissertation demonstrates a new technique for online condition assessment of power cable insulation condition based on capacitor switching transient voltage measurements. While majority of utilities in USA are following corrective maintenance for MV cables, only few utilities have procedures in place for offline preventive maintenance of MV cables. The technique demonstrated in this research will enable all utilities to carry out preventive online monitoring of MV power cables. This dissertation also demonstrates that capacitive test point of cable elbow connector can be used to measure switching transients for power cables in service. This technique can be easily incorporated into existing capacitive test points of cable accessories. This technique has a potential to develop and deploy measurement units for online monitoring of power cables.
|
125 |
Glacier Surge Dynamics on Western Axel Heiberg Island, NunavutLauzon, Benoît 30 August 2022 (has links)
Surge-type glaciers experience cyclical variations between long periods of slow flow, followed by shorter periods of rapid flow. These glaciers have been thoroughly analysed in many regions, but detailed studies of surging in the Canadian Arctic are lacking. This thesis provides the first comprehensive reconstruction of the dynamics of Iceberg and Airdrop glaciers, located on western Axel Heiberg Island, and reveals detailed observations of a surge for the first time in the Canadian Arctic. A variety of remotely sensed data, including historical aerial photographs, declassified intelligence satellite photographs, optical satellite imagery (e.g., ASTER, Landsat), and synthetic aperture radar data (e.g., ERS-1, ERS-2) were used to quantify changes in terminus position, ice velocity, and ice thickness since the 1950s. A surge initiated at the terminus of Iceberg Glacier in 1981 and terminated in 2003, suggesting an active phase length of 22 years. High surface velocities, peaking at ~2300 m a⁻¹ at the terminus in summer 1991, were accompanied by a terminus advance of >7 km over the period 1981-1997 and a large transfer of mass down-glacier, causing significant median surface elevation changes reaching >3 ± 1 m a⁻¹ across the entire trunk width. The ensuing quiescent period has seen a continual decrease in flow rates to an average centreline velocity of 11.5 m a⁻¹ in 2020-2021, a gradual steepening of the glacier surface, and a terminus retreat of >2.5 km.
Observations on Airdrop Glacier show a continuous advance totalling ~6 km since 1950 and notably less variability in its surface velocities in comparison to Iceberg Glacier. This advance can be attributed to consistently high flow rates of Airdrop’s entire surface, resulting in significant thickening near its terminus since at least 1977. However, velocities have more than halved within the last 15 years, but without any clear evidence of previous fast flow events, we cannot confirm whether Airdrop’s behaviour is cyclic in nature and therefore characteristic of a surge. Instead, Airdrop Glacier could be experiencing a delayed response to positive mass balance conditions of the Little Ice Age, and its recent slowdown could be indicative of a gradual adjustment to recent climatic conditions.
|
126 |
Modeling of corona discharge and Its application to a lightning surge analysis in a power system / コロナ放電のモデリングと電力システムの雷サージ解析への応用 / コロナ ホウデン ノ モデリング ト デンリョク システム ノ ライ サージ カイセキ エノ オウヨウ / コロナ ホウデン ノ モデリング ト デンリョク システム ノ カミナリ サージ カイセキ エノ オウヨウチャン フー タン, Huu Thang Tran 22 March 2014 (has links)
This thesis has proposed a simplified model of corona discharge from an overhead wire struck by lightning for surge computations using the FDTD method. In the corona model, the progression of corona streamers from the wire is represented as the radial expansion of cylindrical conducting region around the wire. The validity of this corona model has been tested against experimental data. Then, its applications to lightning electromagnetic pulse computations have been reviewed. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
127 |
A study on impedance measurement of small-capacitance circuit using transient waveforms / 過渡波形を用いた微小容量からなる回路インピーダンス測定法の一研究 / カト ハケイ オ モチイタ ビショウ ヨウリョウ カラ ナル カイロ インピーダンス ソクテイホウ ノ イチケンキュウパルマタ ディア, Diah Permata 22 March 2015 (has links)
A measurement method of small-capacitance using transient waveforms is proposed in this thesis. A pi-circuit is used to express the stray capacitors between terminals and those from each terminal to ground. Two measuring modes, differential and common modes, are required to obtain the parameters of the circuit. The parameters are determined by transient current waveforms of the modes with an applied voltage, i.e., the open circuited voltage at the end of the current injection cable. The parameters of the pi-type circuit are obtained from a slope of the transient current waveforms or a waveform fitting by a nonlinear method. These methods enable the derivation without a voltage measurement by a probe connecting across the small capacitance, since the parasitic capacitance of the voltage probe obscures the small capacitance. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
128 |
Optimization Of An Unstructured Finite Element Mesh For Tide And Storm Surge Modeling Applications In The Western North Atlantic OceanKojima, Satoshi 01 January 2005 (has links)
Recently, a highly resolved, finite element mesh was developed for the purpose of performing hydrodynamic calculations in the Western North Atlantic Tidal (WNAT) model domain. The WNAT model domain consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60° W meridian. This high resolution mesh (333K) employs 332,582 computational nodes and 647,018 triangular elements to provide approximately 1.0 to 25 km node spacing. In the previous work, the 333K mesh was applied in a Localized Truncation Error Analysis (LTEA) to produce nodal density requirements for the WNAT model domain. The goal of the work herein is to use these LTEA-based element sizing guidelines in order to obtain a more optimal finite element mesh for the WNAT model domain, where optimal refers to minimizing nodes (to enhance computational efficiency) while maintaining model accuracy, through an automated procedure. Initially, three finite element meshes are constructed: 95K, 60K, and 53K. The 95K mesh consists of 95,062 computational nodes and 182,941 triangular elements providing about 0.5 to 120 km node spacing. The 60K mesh contains 60,487 computational nodes and 108,987 triangular elements. It has roughly 0.5 to 185 km node spacing. The 53K mesh includes 52,774 computational nodes and 98,365 triangular elements. This is a particularly coarse mesh, consisting of approximately 0.5 to 160 km node spacing. It is important to note that these three finite element meshes were produced automatically, with each employing the bathymetry and coastline (of various levels of resolution) of the 333K mesh, thereby enabling progress towards an optimal finite element mesh. Tidal simulations are then performed for the WNAT model domain by solving the shallow water equations in a time marching manner for the deviation from mean sea level and depth-integrated velocities at each computational node of the different finite element meshes. In order to verify the model output and compare the performance of the various finite element mesh applications, historical tidal constituent data from 150 tidal stations located within the WNAT model domain are collected and examined. These historical harmonic data are applied in two types of comparative analyses to evaluate the accuracy of the simulation results. First, qualitative comparisons are based on visual sense by utilizing plots of resynthesized model output and historical tidal constituents. Second, quantitative comparisons are performed via a statistical analysis of the errors between model response and historical data. The latter method elicits average phase errors and goodness of average amplitude fits in terms of numerical values, thus providing a quantifiable way to present model error. The error analysis establishes the 53K finite element mesh as optimal when compared to the 333K, 95K, and 60K meshes. However, its required time step of less than ten seconds constrains its application. Therefore, the 53K mesh is manually edited to uphold accurate simulation results and to produce a more computationally efficient mesh, by increasing its time step, so that it can be applied to forecast tide and storm surge in the Western North Atlantic Ocean on a real-time basis.
|
129 |
The Effect Of Tidal Inlets On Open Coast Storm Surge Hydrographs: A Case Study Of Hurricane Ivan (2004)Salisbury, Michael 01 January 2005 (has links)
Florida's Department of Transportation requires design storm tide hydrographs for coastal waters surrounding tidal inlets along the coast of Florida. These hydrographs are used as open ocean boundary conditions for local bridge scour models. At present, very little information is available on the effect that tidal inlets have on these open coast storm tide hydrographs. Furthermore, current modeling practice enforces a single design hydrograph along the open coast boundary for bridge scour models. This thesis expands on these concepts and provides a more fundamental understanding on both of these modeling areas. A numerical parameter study is undertaken to elucidate the influence of tidal inlets on open coast storm tide hydrographs. Four different inlet-bay configurations are developed based on a statistical analysis of existing tidal inlets along the Florida coast. The length and depth of the inlet are held constant in each configuration, but the widths are modified to include the following four inlet profiles: 1) average Florida inlet width; 2) 100 meter inlet width; 3) 500 meter inlet width; and 4) 1000 meter inlet width. In addition, two unique continental shelf profiles are used to design the ocean bathymetry in the model domains: a bathymetry profile consistent with the west/northeast coast of Florida (wide continental shelf width), and a bathymetry profile similar to the southeast coast of Florida (narrow continental shelf width). The four inlet-bay configurations are paired with each of the bathymetry profiles to arrive at eight model domains employed in this study. Results from these domains are compared to control cases that do not include any inlet-bay system in the computational domain. The ADCIRC-2DDI numerical code is used to obtain water surface elevations for all studies performed herein. The code is driven by astronomic tides at the open ocean boundary, and wind velocities and atmospheric pressure profiles over the surface of the computational domains. Model results clearly indicate that the four inlet-bay configurations do not have a significant impact on the open coast storm tide hydrographs. Furthermore, a spatial variance amongst the storm tide hydrographs is recognized for open coast boundary locations extending seaward from the mouth of the inlet. The results and conclusions presented herein have implications toward future bridge scour modeling efforts. In addition, a hindcast study of Hurricane Ivan in the vicinity of Escambia Bay along the Panhandle of Florida is performed to assess the findings of the numerical parameter study in a real-life scenario. Initially, emphasis is placed on domain scale by comparing model results with historical data for three computational domains: an ocean-based domain, a shelf-based domain, and an inlet-based domain. Results indicate that the ocean-based domain favorably simulates storm surge levels within the bay compared to the other model domains. Furthermore, the main conclusions from the numerical parameter study are verified in the hindcast study: 1) the Pensacola Pass-Escambia Bay system has a minimal effect on the open coast storm tide hydrographs; and 2) the open coast storm tide hydrographs exhibit spatial dependence along typical open coast boundary locations.
|
130 |
A High-resolution Storm Surge Model For The Pascagoula Region, MississippiTakahashi, Naeko 01 January 2008 (has links)
The city of Pascagoula and its coastal areas along the United States Gulf Coast have experienced many catastrophic hurricanes and were devastated by high storm surges caused by Hurricane Katrina (August 23 to 30, 2005). The National Hurricane Center reported high water marks exceeding 6 meters near the port of Pascagoula with a near 10-meter high water mark recorded near the Hurricane Katrina landfall location in Waveland, MS. Although the Pascagoula River is located 105 km east of the landfall location of Hurricane Katrina, the area was devastated by storm surge-induced inundation because of its low elevation. Building on a preliminary finite element mesh for the Pascagoula River, the work presented herein is aimed at incorporating the marsh areas lying adjacent to the Lower Pascagoula and Escatawpa Rivers for the purpose of simulating the inland inundation which occurred during Hurricane Katrina. ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) is employed as the hydrodynamic circulation code. The simulations performed in this study apply high-resolution winds and pressures over the 7-day period associated with Hurricane Katrina. The high resolution of the meteorological inputs to the problem coupled with the highly detailed description of the adjacent inundation areas will provide an appropriate modeling tool for studying storm surge dynamics within the Pascagoula River. All simulation results discussed herein are directed towards providing for a full accounting of the hydrodynamics within the Pascagoula River in support of ongoing flood/river forecasting efforts. In order to better understand the hydrodynamics within the Pascagoula River when driven by an extreme storm surge event, the following tasks were completed as a part of this study: 1) Develop an inlet-based floodplain DEM (Digital Elevation Model) for the Pascagoula River. The model employs topography up to the 1.5-meter contour extracted from the Southern Louisiana Gulf Coast Mesh (SL15 Mesh) developed by the Federal Emergency Management Agency (FEMA). 2) Incorporate the inlet-based floodplain model into the Western North Atlantic Tidal (WNAT) model domain, which consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60 degree West meridian, in order to more fully account for the storm surge dynamics occurring within the Pascagoula River. This large-scale modeling approach will utilize high-resolution wind and pressure fields associated with Hurricane Katrina, so that storm surge hydrographs (elevation variance) at the open-ocean boundary locations associated with the localized domain can be adequately obtained. 3) Understand the importance of the various meteorological forcings that are attributable to the storm surge dynamics that are setup within the Pascagoula River. Different implementations of the two model domains (large-scale, including the WNAT model domain; localized, with its focus concentrated solely on the Pascagoula River) will involve the application of tides, storm surge hydrographs and meteorological forcing (winds and pressures) in isolation (i.e., as the single forcing mechanism) and collectively (i.e., together in combination). The following conclusions are drawn from the research presented in this thesis: 1) Incorporating the marsh areas into the preliminary in-bank mesh provides for significant improvement in the astronomic tide simulation; 2) the large-scale modeling approach (i.e., the localized floodplain mesh incorporated into the WNAT model domain) is shown to be most adequate towards simulating storm surge dynamics within the Pascagoula River. Further, we demonstrate the utility of the large-scale model domain towards providing storm surge hydrographs for the open-ocean boundary of the localized domain. Only when the localized domain is forced with the storm surge hydrograph (generated by the large-scale model domain) does it most adequately capture the full behavior of the storm surge. Finally, we discover that while the floodplain description up to the 1.5-m contour greatly improves the model response by allowing for the overtopping of the river banks, a true recreation of the water levels caused by Hurricane Katrina will require a floodplain description up to the 5-m contour.
|
Page generated in 0.062 seconds