• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 32
  • 25
  • 20
  • 15
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 186
  • 46
  • 41
  • 40
  • 32
  • 27
  • 25
  • 23
  • 21
  • 21
  • 19
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Simulação numérica de difusores tangenciais com modelo de tensões de Reynolds. / Numerical simulation of swirl diffusers with Reynolds stress model.

Sartori, Rafael de Freitas 20 September 2013 (has links)
Difusores de ar é um tema de particular interesse na indústria dos sistemas de ar condicionado e climatização. O difusor swirl (ou tangencial) é um tipo de difusor já utilizado em alguns ambientes climatizados. O seu comportamento é mais conhecido em aplicações no campo da combustão, mas, em aplicações de sistemas de ar condicionado o Número de Reynolds é bem menor, não há a combustão e as condições de contorno são diferentes. Além disso, têm-se poucos estudos voltados para estes difusores num domínio 3D. Com esta motivação, o presente trabalho apresenta as simulações de um difusor tangencial em vazões típicas de aplicações de conforto térmico personalizado, utilizando a modelo de turbulência Reynolds Stress em um domínio 3D. Algumas simulações em um domínio 2D são realizadas a fim de se obter algumas características essenciais do escoamento, como abertura e comprimento do jato. Porém, comparados ao experimento, os resultados 2D precisam ser melhorados. Esquemas de discretização de maior ordem são utilizados para se avaliar o desempenho. Nas simulações no domínio 3D, verifica-se que um resultado melhor é alcançado quando se refina a malha na região central do jato, logo abaixo do difusor. Dois métodos de especificação da condição de contorno de entrada são estudados: o primeiro consiste em utilizar os dados experimentais obtidos na saída do difusor para simular o escoamento sem a geometria do difusor e o segundo simula o difusor completo, aplicando a magnitude da velocidade perpendicularmente à superfície de entrada com base na vazão calculada pelos dados do experimento do PIV (Particle Image Velocimetry). Os resultados numéricos são comparados com o experimento. Verifica-se que o método de simulação sem o difusor apresenta resultados mais precisos com relação ao experimento e apresenta maiores vantagens na simulação numérica. / Air diffusers are a topic of particular interest in the industry of acclimatization and air conditioning systems. The swirl (or tangential) diffuser is a type of device already used in some air conditioned environments. Their behavior is best known in combustion applications, but in air conditioning systems applications, the Reynolds number is much lower, there is no combustion and the boundary conditions are different. In addition, there have been few studies on these diffusers in 3D domain. With this motivation, this work presents simulations of a tangential flow diffuser for applications of thermal comfort. The numerical study uses the Reynolds stress turbulence model in a 3D domain. Some simulations in a 2D domain are performed in order to obtain some essential features of the flow, as the width and length of the jet. However, compared to the experiment, the 2D results need to be improved. Higher order discretization schemes are used to evaluate performance. In 3D domain simulations, it is verified that a better result is achieved when the mesh is refined in the jets central region, just below the diffuser. Two methods of the inlet boundary conditions are studied: the first consists of using the experimental data obtained at the exit of the diffuser to simulate the flow without the geometry of the diffuser and the second method simulates the diffuser completely, applying the velocity magnitude perpendicular to the inlet surface based on the calculated flow rate with experimental data of PIV (Particle Image Velocimetry). The numerical results are compared with experiment. It is noted that a simulation method without the geometry of the diffuser provides more accurate results with the experiment and has major advantages in the numerical simulation.
112

Flame structure and thermo-acoustic coupling for the low swirl burner for elevated pressure and syngas conditions

Emadi, Majid 01 December 2012 (has links)
Reduction of the pollutant emissions is a challenge for the gas turbine industry. A solution to this problem is to employ the low swirl burner which can operate at lower equivalence ratios than a conventional swirl burner. However, flames in the lean regime of combustion are susceptible to flow perturbations and combustion instability. Combustion instability is the coupling between unsteady heat release and combustor acoustic modes where one amplifies the other in a feedback loop. The other method for significantly reducing NOx and CO2 is increasing fuel reactivity, typically done through the addition of hydrogen. This helps to improve the flammability limit and also reduces the pollutants in products by decreasing thermal NOx and reducing CO2 by displacing carbon. In this work, the flammability limits of a low swirl burner at various operating conditions, is studied and the effect of pressure, bulk velocity, burner shape and percent of hydrogen (added to the fuel) is investigated. Also, the flame structure for these test conditions is measured using OH planar laser induced fluorescence and assessed. Also, the OH PLIF data is used to calculate Rayleigh index maps and to construct averaged OH PLIF intensity fields at different acoustic excitation frequencies (45-155, and 195Hz). Based on the Rayleigh index maps, two different modes of coupling between the heat release and the pressure fluctuation were observed: the first mode, which occurs at 44Hz and 55Hz, shows coupling to the flame base (due to the bulk velocity) while the second mode shows coupling to the sides of the flame. In the first mode, the flame becomes wider and the flame base moves with the acoustic frequency. In the second mode, imposed pressure oscillations induce vortex shedding in the flame shear layer. These vortices distort the flame front and generate locally compact and sparse flame areas. The local flame structure resulting from these two distinct modes was markedly different.
113

The rotating injector as a tool for exploring DI diesel combustion and emissions formation processes

Sjöberg, Magnus January 2001 (has links)
A diesel fuel injector has been modified to allow rotationaround its axis, driven by an electric motor. Injections at upto 6000 rpm from the rotating injector have been investigatedunder the influence of air swirl on one optical research engineand one optically accessible heavy-duty diesel engine. The experiments show that changing from a normal, staticinjection to a sweeping injection has profound effects on sprayformation, dispersion and penetration. This influences thefuel/air-mixing, autoignition, combustion rate and emissionsformation. The spray propagation is stronger influenced byinjector rotation than by air swirl. The air entrainment into the spray increases forcounter-swirl rotation of the injector and this speeds up thevaporization and decreases the formation of soot. In addition,the oxidation of soot is enhanced since the counter-swirlinjection forces the intense fuel-rich and soot containingspray core to penetrate into fresh air instead of replenishingthe rich regions in the head of the spray. Fuel accumulationalong the piston bowl wall decreases as an effect of thereduced penetration with counter-swirl injection. Altogether,this decreases the smoke emissions for low and intermediateengine loads. For the combustion system studied, counter-swirl rotation ofthe injector cannot decrease the smoke emissions at high engineload since the reduced spray penetration impairs the airutilization. Fast and efficient combustion at high loadrequires spray induced flame spread out into the squish region.Spray induced flow of cool fresh air from the bottom of thepiston bowl in towards the injector is also important for lowsoot formation rates. Co-swirl rotation of the injector reduces the airentrainment into the spray and increases the soot formation.The increased smoke and CO emissions with co-swirl injectionare also attributed to the excessively large fuel-rich regionsbuilt up against the piston bowl wall. Increased air swirl generally reduces smoke and COemissions. This is mainly an effect of enhanced burnout due tomore intense mixing after the end of fuel injection. Changes in smoke as an effect of injector rotation aregenerally accompanied with opposite, but relatively small,changes in NO. Fast and efficient burnout is important for lowsmoke emissions and this raises both the temperature andproduction of NO. NO production is strongly influenced by thein-cylinder conditions during the latter part of themixing-controlled combustion and in the beginning of theburnout. <b>Keywords:</b>diesel spray combustion, rotating injector,air swirl, air/fuel-mixing, soot, NO, CO, flame visualization,Chemkin modeling, soot deposition
114

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
115

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
116

Sensing and Dynamics of Lean Blowout in a Swirl Dump Combustor

Thiruchengode, Muruganandam 11 April 2006 (has links)
This thesis describes an investigation on the blowout phenomenon in gas turbine combustors. The combustor primarily used for this study was a swirl- and dump-stabilized, atmospheric pressure device, which did not exhibit dynamic combustion instabilities. The first part of the thesis work concentrated on finding a sensing methodology to be able to predict the onset of approach of combustor blowout using optical methods. Temporary extinction-reignition events that occurred prior to blowout were found to be precursor events to blowout. A threshold based method was developed to identify these events in the time-resolved sensor output. The number and the average length of each event were found to increase as the LBO limit (fuel-air ratio) is approached. This behavior is used to predict the proximity to lean blowout. In the second part of this study, the blowout sensor was incorporated into a control system that monitored the approach of blowout and then actuated an alternate mechanism to stabilize the combustor near blowout. Enhanced stabilization was achieved by redirecting a part of the main fuel to a central preinjection pilot injection. The sensing methodology, without modification, was effective for the combustor with pilot stabilization. An event based control algorithm for controlling the combustor from blowing out was also developed in this study. The control system was proven to stabilize the combustor even when the combustor loading was rapidly changed. The final part of this study focused on understanding the physical mechanisms behind the precursor events. High speed movies of flame chemiluminescence and laser sheet scattering from oil droplets seeded into the reactants were analyzed to explain the physical processes that cause the extinction and the reignition of the combustor during a precursor event. A physical model for coupling of the fluid dynamics of vortex breakdown and combustion during precursor and blowout events is proposed. This model of blowout phenomenon, along with the sensing and control strategies developed in this study could enable the gas turbine combustor designers to design combustors with wider operability regimes. This could have significant payoffs in terms of reduction in NOx emissions from the combustor.
117

Non-Intrusive Experiemental Investigation of Multi-Scale Flow Behavior in Rod Bundle with Spacer-Grids

Dominguez Ontiveros, Elvis Efren 2010 May 1900 (has links)
Experiments investigating complex flows in rod bundles with spacer grids that have mixing devices (such as flow mixing vanes) have mostly been performed using single-point measurements. Although these measurements allow local comparisons of experimental and numerical data they provide little insight because the discrepancies can be due to the integrated effects of many complex flow phenomena such as wake-wake, wake-vane, and vane-boundary layer interactions occurring simultaneously in a complex flow environment. In order to validate the simulations results, detailed comparison with experimental data must be done. This work describes an experimental database obtained using Time Resolved Particle Image Velocimetry (TR-PIV) measurements within a 5 x 5 rod bundle with spacer-grids. Measurements were performed using two different grid designs. One typical of Boiling Water Reactors (BWR) with swirl type mixing vanes and the other typical of Pressurized Water Reactors (PWR) with split type mixing vanes. High quality data was obtained in the vicinity of the grid using the multi-scale approach. One of the unique characteristic of this set-up is the use of the Matched Index of Refraction (MIR) technique employed in this investigation. This approach allows the use of high temporal and spatial non-intrusive dynamic measurement techniques to investigate the flow evolution below and immediately above the spacer. The experimental data presented includes explanation of the various cases tested such as test rig dimensions, measurement zones, the test equipment and the boundary conditions in order to provide appropriate data for comparison with Computational Fluid Dynamics (CFD) simulations. Turbulence parameters of the obtained data are analyzed in order to gain insight of the physical phenomena. The shape of the velocity profile at various distances from the spacer show important modifications passing the grid which delineates the significant effects of the presence of the grid spacer. Influence of the vanes wake in the global velocity was quantified to be up to a distance of 4 hydraulic diameters from the edge of the grid.Spatial and temporal correlations in the two measured dimensions were performed to quantify the time and length scales present in the flow in the vicinity of the grids and its influence in the flow modification induced by the vanes. Detection of vortex cores was performed using the vorticity, swirl strength and Galilean decomposition approach. The resulted cores were then tracked in time, in order to observe the evolution of the structures under the influence of the vanes for each grid. Vortex stretching was quantified in order to gain insight of the energy dissipation process normally associated with the phenomena. This work presents data in a single-phase flow situation and an analysis of these data for understanding complex flow structure. This data provide for the first time detailed temporal velocity full field which can be used to validate CFD codes.
118

The rotating injector as a tool for exploring DI diesel combustion and emissions formation processes

Sjöberg, Magnus January 2001 (has links)
<p>A diesel fuel injector has been modified to allow rotationaround its axis, driven by an electric motor. Injections at upto 6000 rpm from the rotating injector have been investigatedunder the influence of air swirl on one optical research engineand one optically accessible heavy-duty diesel engine.</p><p>The experiments show that changing from a normal, staticinjection to a sweeping injection has profound effects on sprayformation, dispersion and penetration. This influences thefuel/air-mixing, autoignition, combustion rate and emissionsformation. The spray propagation is stronger influenced byinjector rotation than by air swirl.</p><p>The air entrainment into the spray increases forcounter-swirl rotation of the injector and this speeds up thevaporization and decreases the formation of soot. In addition,the oxidation of soot is enhanced since the counter-swirlinjection forces the intense fuel-rich and soot containingspray core to penetrate into fresh air instead of replenishingthe rich regions in the head of the spray. Fuel accumulationalong the piston bowl wall decreases as an effect of thereduced penetration with counter-swirl injection. Altogether,this decreases the smoke emissions for low and intermediateengine loads.</p><p>For the combustion system studied, counter-swirl rotation ofthe injector cannot decrease the smoke emissions at high engineload since the reduced spray penetration impairs the airutilization. Fast and efficient combustion at high loadrequires spray induced flame spread out into the squish region.Spray induced flow of cool fresh air from the bottom of thepiston bowl in towards the injector is also important for lowsoot formation rates.</p><p>Co-swirl rotation of the injector reduces the airentrainment into the spray and increases the soot formation.The increased smoke and CO emissions with co-swirl injectionare also attributed to the excessively large fuel-rich regionsbuilt up against the piston bowl wall.</p><p>Increased air swirl generally reduces smoke and COemissions. This is mainly an effect of enhanced burnout due tomore intense mixing after the end of fuel injection.</p><p>Changes in smoke as an effect of injector rotation aregenerally accompanied with opposite, but relatively small,changes in NO. Fast and efficient burnout is important for lowsmoke emissions and this raises both the temperature andproduction of NO. NO production is strongly influenced by thein-cylinder conditions during the latter part of themixing-controlled combustion and in the beginning of theburnout.</p><p><b>Keywords:</b>diesel spray combustion, rotating injector,air swirl, air/fuel-mixing, soot, NO, CO, flame visualization,Chemkin modeling, soot deposition</p>
119

Numerical and physical analysis of liquid break-up and atomisation relating to pressure-swirl gasoline direct injection

Heather, Andrew January 2007 (has links)
This thesis presents detailed fuel spray investigations relating to an automotive Gasoline Direct Injection (GDI) pressure-swirl injector, employing a combination of numerical and physical analyses. The emphasis is placed on the near-nozzle in recognition that all later flow processes are dominated by this critical region. To enable the technology to maximise its potential, it is essential to further our understanding of the fundamental flow physics that govern the injection process, which remain largely unknown. The complexity of the spray process has led to many avenues of research. Simplified models are particularly suitable for parametric studies, allowing fast computation of some of the most important design parameters, such as nozzle discharge coefficient, cone angle and initial velocity. More complex methods such as Computational Fluid Dynamics (CFD) offer significantly more detail including the temporal and spatial evaluation of the flow field and fuel distribution, but at the cost of often lengthy computational time, and the need to tune models against physical evidence. Unfortunately none are able to describe all aspects of the injection event simultaneously. A considerable body of existing experimental data gathered under atmospheric conditions has been condensed and carefully presented to provide a comprehensive picture of injector operation. This comprises global spray performance data, spray imaging, and droplet velocity and size maps as a function of time after the Start Of Injection (SOl). These serve to provide a means to develop physical models and to correlate model predictions. Particular attention is drawn to the challenges faced by numerical methods to successfully predict the complex spray behaviour. A fundamental computational study employing the Volume Of Fluid (VOF) method describes droplet break-up under controlled conditions. By varying the Weber number of the flow the expected break-up mechanisms are recovered, and the numerics and case set-up tuned to offer a practical balance between the resource burden and solution accuracy. This paved the way to a detailed 3-D transient analysis of the near-nozzle region of a pressure-swirl injector. Computed results clearly identify the consecutive phases of the fuel spray development, from the initial unsteady jet through to the stable, swirling hollow cone formation. Comparison with experimental measurements revealed that the computational approach is able to capture the main qualitative features of the spray process.
120

Análise numérica transiente com validação experimental do escoamento em motores de combustão interna considerando diferentes aberturas de válvula

Soriano, Bruno Souza January 2015 (has links)
Com o crescente aumento dos problemas ambientais relacionados à emissão de poluentes, normas cada vez mais rigorosas estão sendo implementadas para diminuir a emissão de gases nocivos provenientes da queima de hidrocarbonetos em motores de combustão interna. Um importante fator que influencia na geração de gases poluentes em motores é o comportamento do escoamento no cilindro, desde o início da admissão até a fase de combustão. O presente trabalho realiza um estudo numérico com validação experimental do escoamento no motor Honda GX35, considerando diversas aberturas de válvula fixas e diferenças de pressão para gerar o escoamento. A validação da metodologia numérica é realizada através da comparação dos resultados do coeficiente de descarga para todas as aberturas de válvula utilizadas. A medição da vazão de ar na metodologia experimental é realizada com um anemômetro de filme quente de aplicação automotiva, calibrado para as condições do teste. Já a metodologia numérica utiliza dois modelos de turbulência, k-ω SST e k-ε standard. Os resultados numéricos apresentaram boa concordância com os experimentais para ambos os modelos adotados, quanto ao coeficiente de descarga. Entretanto, a diferença de comportamento do escoamento no interior do cilindro é elevada, pois o modelo k-ω SST é capaz de captar a oscilação transiente do jato que se forma na saída da válvula, inexistente no k-ε standard. O comportamento transiente causa uma significativa variação da vorticidade média em um plano perpendicular ao cilindro, com o escoamento trocando de direção principal de rotação em alguns instantes. Dados numéricos médios e de variação ao longo do tempo para swirl e tumble também são apresentados e discutidos. Ao analisar a oscilação da vazão mássica na fronteira de saída do domínio, frequências de aproximadamente 1300 Hz são captadas. Tais frequências são confrontadas com resultados experimentais obtidos pelo presente grupo de pesquisa para medições de oscilação de pressão no coletor de admissão do mesmo motor. O desvio percentual relativo para a frequência de oscilação é de 0,3%, o que demonstra a correta predição, tanto do fenômeno de desprendimento de vórtice quanto do coeficiente de descarga obtido através do modelo de turbulência k-ω SST. / With the increasing environmental problems concerning pollutant emissions, stringent standards have been applied in order to decrease harmful gases produced by the hydrocarbons combustion in internal combustion engines. The flow behaviour within the cylinder is an important factor that affects the emission’s formation in engines, since the intake stroke until the combustion. This work performs a numerical study with experimental validation of fluid flow at Honda GX35 engine, considering different fixed valve lifts and suction pressures to generate the flow. The validation of the numerical methodology is made through the discharge coefficient and flow pattern comparisons for all valve lifts utilized. The mass flow rate in the intake system is measured with an automotive hot film anemometer, calibrated for the test’s conditions. Regarding the computational solution for the turbulent air flow, two turbulence models were utilized: SST k-ω and k-ε standard. Although the numerical results presented a good agreement with the experimental data concerning the discharge coeficient, the flow pattern comparisons presented a high discrepancy among the models utilized. The SST k-ω model is capable to capture the transient behaviour of the jet formed in the valve exit, constituting the main difference between them. The transient oscillation causes a significant difference of mean vorticity in a cylinder section plane, with the bulk flow changing its main rotation along the time. The averaged and transient numerical data of swirl and tumble are presented and discussed. In the frequency analysis of the numerical mass flow rate oscillations, obtained at the outlet boundary, presented an average value about 1300 Hz. Such frequencies, when compared with experimental results obtained by the present research group for the pulsating pressure waves into the intake duct of the same engine, had a relative percentage deviation of 0.3%. The agreement between the results using the SST k-ω model reveals the correct prediction of vortex shedding frequency and discharge coefficient.

Page generated in 0.0444 seconds