41 |
Tecnicas de interpolacao em filtros multiritmo com condensadores comutados para Interfaces Analogicas com filtragem de alta-frequencia = Multirate Switched-Capacitor interpolation techniques for very high-frequency Analog Front-End filtering / Multirate Switched-Capacitor interpolation techniques for very high-frequency Analog Front-End filteringU, Seng-Pan January 2002 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
|
42 |
多率開關電容內插技術及其在超高頻模擬前端濾波的應用 / Multirate Switched-Capacitor interpolation techniques for very high-frequency Analog Front-End filteringU, Seng-Pan January 2002 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
|
43 |
A data acquisition system with switched capacitor sample-and-holdHarbour, Kenton Dean January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas State University Libraries / Department: Electrical Engineering.
|
44 |
EFFICIENT VOLTAGE REGULATION USING SWITCHED CAPACITOR DC/DC CONVERTER FROM BATTERY AND ENERGY HARVESTING POWER SOURCESChowdhury, Inshad January 2010 (has links)
Recent portable electronic technologies require the power management circuit be efficient, small and cost effective. The switched-capacitor (SC) converter provides a trade-off between the efficiency, the size and the cost that is desirable in many of these new portable technologies. This dissertation investigates different circuit techniques and SC converter topologies to make the SC converters fully adapt to the portable system requirements. To make the SC converter efficient over a wide range of input and output voltages, a family of SC power stages with multiple gain ratio (GR) is developed. Multiple GR allows the converter to provide step-down or step-up voltage conversion while increasing the average efficiency of the converter. These power stages are also capable of providing interleaving regulation that has been proved to be effective in reducing the input and the output noise of the converter. Unlike conventional interleaving, the technique developed in this research uses fewer switches and capacitors. The research also contributes in developing circuit techniques such as charge recycling in the bottom plate parasitic capacitors, local gate driving and adaptive body biasing to reduce the power loss in monolithic SC converter implementation. To control the SC power stage for accurate regulation and fast transient response, a control scheme named adaptive gain/pulse control is developed. The research also investigates the use of multipath compensation scheme in SC converters for ultra fast and low noise performance. The techniques and the topologies developed for SC converters in this research can be effectively implemented in the portable devices to reduce cost, and improve efficiency which leads to longer battery life and circuit implementation using smaller areas.
|
45 |
High efficiency MPPT switched capacitor DC-DC converter for photovoltaic energy harvesting aiming for IoT applications / Conversor DC - DC de Alta Eficiência baseado em Capacitores Chaveados usando MPPT com o Objetivo de Coletar Energia Fotovoltaica com Foco em Aplicações IoTZamparette, Roger Luis Brito January 2017 (has links)
Este trabalho apresenta um conversor CC - CC baseado em Capacitores Chaveados de 6 fases e tempos intercalados com o objetivo de coletar energia fotovoltaica projetado em tecnologia CMOS de 130 nm para ser usado em aplicações em Internet das Coisas e Nós Sensores. Ele rastreia o máximo ponto de entrega de energia de um painel fotovoltaico policristalino de 3 cm x 3 cm através de modulação da frequência de chaveamento com o objetivo de carregar baterias. A razão da tensão de circuito aberto foi a estratégia de rastreio escolhida. O conversor foi projetado em uma tecnologia CMOS de 130 nm e alcança uma eficiência de 90 % para potencias de entrada maiores do que 30 mW e pode operar com tensões que vão de 1.25 até 1.8 V, resultando em saídas que vão de 2.5 até 3.6, respectivamente. Os circuitos periféricos também incluem uma proteção contra sobre tensão na saída de 3.6 V e circuitos para controle, que consomem um total máximo de potência estática de 850 A em 3.3 V de alimentação. O layout completo ocupa uma área de 300 x 700 m2 de silício. Os únicos componentes não integrados são 6x100 nF capacitores.
|
46 |
Switched-Capacitor RF Receivers for High Interferer ToleranceXu, Yang January 2018 (has links)
The demand for broadband wireless communication is growing rapidly, requiring more spectrum resources. However, spectrum usage is inefficient today because different frequency bands are allocated for different communication standards and most of the bands are not highly occupied.
Cognitive radio systems with dynamic spectrum access improve spectrum efficiency, but they require wideband tunable receiver hardware. In such a system, a preselect filter is required for the RF receiver front end, because an out-of-band (OB) interferer can block the front end or cause distortion, desensitizing the receiver. In a conventional solution, off-chip passive filters, such as surface-acoustic-wave (SAW) filters, are used to reject the OB interferer. However, such passive filters are hardly tunable, have large area, and are very expensive. On-chip, high-selectivity, linearly tunable RF filters are, therefore, a hot topic in RF front-end research. Switched-capacitor (SC) RF filters, such as N-path filters, feature good linearity and tunability, making them good candidates for tunable RF filters. However, N-path filters have some drawbacks: notably, a poor harmonic response and limited close-by blocker tolerance.
This thesis presents the design and implementation of several interferer-tolerant receivers based on SC technology. We present an RF receiver with a harmonic-rejecting N-path filter to improve the harmonic response of the N-path bandpass filter. It features tunable narrowband filtering and high attenuation of the third- and fifth-order LO harmonics at the LNA output, which improves the blocker tolerance at LO harmonics. The 0.2-1 GHz RF receiver is implemented in a 65 nm CMOS process. The blocker 1 dB compression point (B1dB) is -2.4 dBm at a 20 MHz offset, and remains high at the third- and fifth-order LO harmonics. The LNA’s reverse isolation helps keep the LO emission below -90 dBm. A two-stage harmonic-rejection approach offers a > 51 dB harmonic-rejection ratio at the third- and fifth-order LO harmonics without calibration.
To improve tolerance for close-by blockers, we further present an SC RF receiver achieving high-order, tunable, highly linear RF filtering. We implement RF input impedance matching, N-path filtering, high-order discrete-time infinite-impulse response (IIR) filtering and downconversion using only switches and capacitors in a 0.1-0.7 GHz prototype with tunable center frequency, programmable filter order, and very high tolerance for OB blockers. The 40 nm CMOS receiver consumes 38.5-76.5mA, achieves 40 dB gain, 24 dBm OB IIP3, 14.7 dBm B1dB for a 30MHz blocker offset, 6.8-9.7 dB noise figure, and > 66dB calibrated harmonic rejection ratio.
The key drawback of our earlier SC receiver is the relatively high theoretical lower limit of the noise figure. To improve the noise performance, we developed a 0.1-0.6 GHz chopping SC RF receiver with an integrated blocker detector. We achieve RF impedance matching, high-order OB interferer filtering, and flicker-noise chopping with passive SC circuits only. The 34-80 mW 65 nm receiver achieves 35 dB gain, 4.6-9 dB NF, 31 dBm OB-IIP3, and 15 dBm B1dB. The 0.2 mW integrated blocker detector detects large OB blockers with only a 1 us response time. The filter order can be adapted to blocker power with the blocker detector.
|
47 |
Low-voltage switched-capacitor circuitsBidari, Emad 25 November 1998 (has links)
In recent years, the rapidly growth of CMOS technology has evolved towards submicron and deep-submicron features. Due to smaller device sizes, and significant demand for low-power designs, the maximum allowable power supply voltage is restricted. So far, two solutions; clock boosting and switched opamp schemes have been proposed. The material presented in this thesis shows the drawback of these schemes while presenting three new methods for realizing low-voltage switched-capacitor integrators which are the key stages of ����� modulators and SC filters.
Using these integrators, several circuit realizations of SC filters and second order ����� modulators will be shown. / Graduation date: 1999
|
48 |
MOSFET-only predictive track and hold circuitQiu, Xiangping 19 March 1997 (has links)
High-accuracy and high-speed CMOS track-and-hold (T/H) or sample-and-hold (S/H) circuits are an important part of the analog-to-digital interface. The switched-capacitor (SC) circuits usually contain one or more op-amps whose dc offset, finite gain, finite bandwidth have a big impact on the accuracy of the track-and-hold circuit. Basic correlated double sampling (CDS) scheme can reduce such effects, but the compensation that it provides may not be good enough for high-accuracy application. Also, the high-quality analog poly-poly capacitors used in most SC circuits are not available in a basic digital CMOS process. The MOSFET-only predictive track-and-hold circuit, discussed in this thesis, replaces the poly-poly capacitors with easily-available low-cost area-saving MOSFET capacitors biased in accumulation region. It also uses the predictive correlated double sampling (CDS) scheme, in which the op-amp
predicts its output for the next clock period during the present clock period, so that the adjacent two output samples are nearly the same. The predictive operation results in more correlation between the unwanted signal and the signal that is subtracted during the double sampling, and hence can achieve offset and gain compensation over wider frequency range. Hence, this circuit is suitable for high-accuracy applications, while using only a basic digital process. / Graduation date: 1997
|
49 |
Nyquist-Rate Switched-Capacitor Analog-to-Digital ConvertersLarsson, Andreas 1978- 14 March 2013 (has links)
The miniaturization and digitization of modern microelectronic systems have made Analog-to-Digital converters (ADC) key building components in many applications. Internet and entertainment technologies demand higher and higher performance from the hardware components in many communication and multimedia systems, but at the same time increased mobility demands less and less power consumption. Many applications, such as instrumentation, video, radar and communications, require very high accuracy and speed and with resolutions up to 16 bits and sampling rates in the 100s of MHz, pipelined ADCs are very suitable for such purposes. Resolutions above 10 bits often require very high power consumption and silicon area if no error correction technique is employed. Calibration relaxes the accuracy requirement of the individual building blocks of the ADC and enables power and area savings. Digital calibration is preferred over analog calibration due to higher robustness and accuracy. Furthermore, the microprocessors that process the digital information from the ADCs have constantly reduced cost and power consumption and improved performance due to technology scaling and innovative microprocessor architectures.
The work in this dissertation presents a novel digital background calibration technique for high-speed, high-resolution pipelined ADCs. The technique is implemented in a 14 bit, 100 MS/s pipelined ADC fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.13µm Complementary Metal Oxide Semiconductor (CMOS) digital technology. The prototype ADC achieves better than 11.5 bits linearity at 100 MS/s and achieves a best-in-class figure of merit of 360 fJ/conversion-step. The core ADC has a power consumption of 105 mW and occupies an active area of 1.25 mm^2.
The work in this dissertation also presents a low-power, 8-bit algorithmic ADC. This ADC reduces power consumption at system level by minimizing voltage reference generation and ADC input capacitance. This ADC is implemented in International Business Machines Corporation (IBM) 90nm digital CMOS technology and achieves around 7.5 bits linearity at 0.25 MS/s with a power consumption of 300 µW and an active area of 0.27 mm^2.
|
50 |
Speed enhancement techniques for comparator-based switched-capacitor circuitsWong, Kim Fai January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
|
Page generated in 0.0742 seconds