• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methodology for Switching Characterization of Power Devices and Modules

Witcher, Joseph Brandon 19 March 2003 (has links)
In modern power electronics systems there is a growing trend to replace discrete devices with integrated power electronic modules (IPEMs). In this way, several components can be replaced by a single component. By using prefabricated building blocks, the engineer simplifies the design process, reducing the total design cycle time and cost. By integrating only the necessary components to provide power switching, the end user has a pre-optimized building block with the flexibility to be used in a large variety of applications. Besides simplifying the design process, power modules should be designed in such a way as to improve the performance of the power converter. This begs the question as to how best to judge if one IPEM has better performance than another or better performance than its discrete counterpart. In analyzing a converter's performance, popular criteria include efficiency, power density, device stresses, and EMI. All of these criteria are strongly linked to the switching characteristics of the IPEM's power devices. This thesis is a comprehensive study of the requirements for obtaining and analyzing the switching characteristics of the IPEM's power devices. It outlines the important switching characteristics and the implications of each characteristic on converter performance. It deals with the relevant measurement issues, specifically addressing the minimum requirements, which sensors are most suitable, and problems leading to inaccurate data. A parametric study is conducted to determine the effects of several circuit and operating parameters on the switching characteristics. Using the resulting data and the knowledge from the measurement study, we can decide how to design the testbed layout, what operating conditions should be chosen for testing, and what effects of the tester must be decoupled to truly see the effects of IPEM design. The thesis concludes with the design of standard test equipment and procedures. / Master of Science
2

Static and Dynamic Characterization of Silicon Carbide and Gallium Nitride Power Semiconductors

Romero, Amy Marie 26 March 2018 (has links)
Wide-bandgap semiconductors have made and are continuing to make a major impact on the power electronics world. The most common commercially available wide-bandgap semiconductors for power electronics applications are SiC and GaN devices. This paper focuses on the newest devices emerging that are made with these wide-bandgap materials. The static and dynamic characterization of six different SiC MOSFETs from different manufacturers are presented. The static characterization consists of the output characteristics, transfer characteristics and device capacitances. High temperature (up to 150 °C) static characterization provides an insight into the dependence of threshold voltage and on-state resistance on temperature. The dynamic characterizations of the devices are conducted by performing the double-pulse test. The switching characteristics are also tested at high temperature, with the presented results putting an emphasis on one of the devices. A comparison of the key characterization results summarizes the performance of the different devices. The characterization of one of the SiC MOSFETs is then continued with a short-circuit failure mode operation test. The device is subjected to non-destructive and destructive pulses to see how the device behaves. The non-destructive tests include a look at the performance under different external gate resistances and drain-source voltages. It is found that as the external gate resistance is increased, the waveforms get noisier. Also, as the drain-source voltage is increased, the maximum short-circuit current level rises. The destructive tests find the amount of time that the device is able to withstand short-circuit operation. At room temperature the device is able to withstand 4.5 μs whereas at 100 °C, the device is able to withstand 4.2 μs. It is found that despite the different conditions that the device is tested at for destructive tests, the energy that they can withstand is similar. This paper also presents the static and dynamic characterization of a 600 V, 2A, normallyoff, vertical gallium-nitride (GaN) transistor. A description of the fabrication process and the setup used to test the device are presented. The fabricated vertical GaN transistor has a threshold voltage of 3.3 V, a breakdown voltage of 600 V, an on-resistance of 880 mΩ, switching speeds up to 97 V/ns, and turn-on and turn-off switching losses of 8.12 µJ and 3.04 µJ, respectively, demonstrating the great potential of this device / MS
3

Monokrystaly perovskitů pro detekci elektromagnetického záření / Perovskite single crystals for the detection of electromagnetic radiation

Gavranović, Stevan January 2021 (has links)
This thesis is focused on the study of the detection of electromagnetic radiation using monocrystalline perovskites. Theoretical part deals with basic principles of detections and possible applications of hybrid perovskite crystals in the field of ultraviolet and visible spectrum detection. Parameters of the recently published perovskite photodetectors are also presented. Experimental part describes synthesis, structural and optical properties of MAPbBr3 single crystals and electrical characterization of the Au/MAPbBr3/Au photodetector. Photodetector parameters (responsivity, external quantum efficiency and specific detectivity) are calculated based on the spectral and switching (on/off) current responses.

Page generated in 0.1105 seconds