1 |
A Novel Three Phase Symmetric Cipher TechniqueMadhavarapu, Venkata Praveen Kumar 01 December 2016 (has links)
Confusion and Diffusion are two properties of a secure cipher, identified by Claude Shannon. Confusion refers to making the relationship between the ciphertext and the symmetric key as complex and involved as possible. We try to achieve more confusion by creating a ciphertext of different length for a given plaintext when key is changed. As per our knowledge, all the existing symmetric encryption techniques will generate cipher text of same length for a given plaintext with different keys. The technique we are implementing here, will create ciphertext with different length for a given plaintext if we change the appropriate values in the key. This symmetric encryption technique will also possibly make the recovery of key very hard for the attacker.
|
2 |
Cryptography based Visual Data Protection / Protection de données visuelles par chiffrement.Islam, Naveed 11 July 2011 (has links)
La transmission de données multimédia sur les réseaux sécurisés a une croissance exponentielle grâce aux progrès scientifique dans les technologies de l'information et de la communication. La sécurité des données dans certaines applications comme le stockage sécurisé, l'authentification, la protection des droits d'auteurs, la communication militaire ou la visioconférence confidentielles, nécessitent de nouvelles stratégies en matière de transmission sécurisée. Deux techniques sont couramment utilisées pour la transmission sécurisée de données visuelles, à savoir : la cryptographie et la stéganographie. La cryptographie sécurise les données en utilisant des clés secrètes afin de rendre les données illisibles, la stéganographie, elle, vise à insérer des données cruciales dans des signaux porteurs anodins.De plus, pour la confiance mutuelle et les systèmes distribués, le partage sécurisé de ressources est souvent une garantie suffisante pour les applications de communication. L'objectif principal de cette thèse est de réaliser une protection des données visuelles, en particulier les images numériques, par le biais des techniques modernes de cryptographie. Dans ce contexte, deux objectifs de recherche ont été développés durant ces travaux de thèse.La première partie de notre travail se concentre sur la sécurité des images numériques dans un environnement partagé. Ensuite, la deuxième partie porte sur l'intégrité des données visuelles pendant une transmission sécurisée.Nous avons proposé un nouveau schéma de partage des images qui exploite les propriétés d'addition et de multiplication homomorphique de deux crypto systèmes à clé publique largement utilisés : les algorithmes RSA et Paillier. Dans les schémas traditionnels de partage sécurisé, le ``dealer'' partitionne le secret en parties et le distribue à chacun des autres acteurs. Ainsi, aucun des acteurs impliqués ne participe à la création du partage sécurisé, mais il est toujours possible que le ``dealer'' transmette des données malveillantes. Au contraire, l'approche proposée utilise le système de partage de secret d'une manière qui limite l'influence du ‘‘dealer'' sur le protocole en permettant à chaque acteur de participer.La deuxième partie de ces travaux de thèse met l'accent sur l'intégrité des données visuelles lors de la transmission. L'intégrité des données signifie que les données gardent leurs structures complètes au cours d'une opération numérique comme le stockage, le transfert ou la récupération. Le changement d'un seul bit de données cryptées peut avoir un impact catastrophique sur les données décryptées. Nous abordons le problème de correction d'erreurs dans les images cryptées en utilisant le chiffrement à clé symétrique AES (Advanced Encryptions Standard) suivant différents modes. Trois mesures sont proposées afin d'exploiter les statistiques locales des données visuelles et l'algorithme de chiffrement, dans l'objectif de corriger les erreurs efficacement. / Due to the advancements in the information and communication technologies, the transmission of multimedia data over secure or insecure communication channels has increased exponentially. The security of data in applications like safe storage, authentications, copyright protection,remote military image communication or confidential video-conferencing require new strategies for secure transmission. Two techniques are commonly used for the secure transmission of visual data, i.e. cryptography and steganography. Cryptography achieves security by using secret keysto make the data illegible while steganography aims to hide the data in some innocent carrier signal. For shared trust and distributed environment, secret sharing schemes provide sufficient security in various communication applications. The principal objective of this thesis is to achieveprotection of visual data especially images through modern cryptographic techniques. In this context, the focus of the work in perspective, is twofolded. The first part of our work focuses on the security of image data in shared environment while the second part focuses on the integrity ofimage data in the encrypted domain during transmission.We proposed a new sharing scheme for images which exploits the additive and multiplicative homomorphic properties of two well known public key cryptosystems, namely, the RSA and the Paillier. In traditional secret sharing schemes, the dealer partitions the secret into shares and distributethe shares to each of the player. Thus, none of the involved players participate in the creation of the shared secret and there is always a possibilitythat the dealer can cheat some player. On the contrary, the proposed approach employs the secret sharing scheme in a way that limits the influence of the dealer over the protocol by allowing each player to participate. The second part of our thesis emphasizes on the integrity of visual data during transmission. Data integrity means that the data have its complete structure during any operation like storage, transfer or retrieval. A single bit change in encrypted data can have catastrophic impact over the decrypted data. We address the problem of error correction in images encrypted using symmetric key cryptosystem of the Advanced Encryption Standard (AES) algorithm. Three methods are proposed to exploit the local statistics of the visual data and the encryption algorithm to successfully correct the errors.
|
3 |
Block ciphers : security proofs, cryptanalysis, design, and fault attacksPiret, Gilles-François 31 January 2005 (has links)
Block ciphers are widely used building blocks for secure communication systems; their purpose is to ensure confidentiality of the data exchanged through such systems, while achieving high performance. In this context, a variety of aspects must be taken into account. Primarily, they must be secure. The security of a block cipher is usually assessed by testing its resistance against known attacks. However as attacks may exist that are currently unknown, generic security proofs are also tried to be obtained. On the other hand, another attack methodology is also worth considering. Contrary to the others, it aims at the implementation of the algorithm rather than the cipher itself. It is known as side-channel analysis. Finally, performance of a block cipher in terms of throughput is very important as well. More than any other cryptographic primitive, block ciphers allow a tradeoff to be made between security and performance.
In this thesis, contributions are given regarding these various topics. In the first part of the thesis, we deal with two particular types of attacks, namely the square attack and key schedule cryptanalysis. We also consider security proofs in the so-called Luby-Rackoff model, which deals with adversaries having unbounded computation capabilities. More precisely, we are interested in the Misty structure, when the round functions are assumed to be involutions.
The second part of the thesis is devoted to design and implementation aspects. First, we present a fault attack on substitution-permutation networks, which requires as few as two faulty ciphertexts to retrieve the key. We also study the security of DeKaRT, which is an algorithm intended to protect smart cards against probing attacks. Finally we present the design of ICEBERG, a block cipher deliberately oriented towards good performance in hardware, and give an adequate analysis of its security.
|
4 |
Random Stream CipherAghaee, Saeed January 2007 (has links)
<p>Stream ciphers are counted as an important part of symmetric encryption method. Their basic idea comes from One-Time-Pad cipher using XOR operator on the plain text and the key to generate the cipher. The present work brings a new idea in symmetric encryption method, which inherits stream key generation idea from synchronous stream cipher and uses division instead of xoring. The Usage of division to combine the plain text with stream key gives numerous abilities to this method that the most important one is using random factors to produce the ciphers.</p>
|
5 |
Random Stream CipherAghaee, Saeed January 2007 (has links)
Stream ciphers are counted as an important part of symmetric encryption method. Their basic idea comes from One-Time-Pad cipher using XOR operator on the plain text and the key to generate the cipher. The present work brings a new idea in symmetric encryption method, which inherits stream key generation idea from synchronous stream cipher and uses division instead of xoring. The Usage of division to combine the plain text with stream key gives numerous abilities to this method that the most important one is using random factors to produce the ciphers.
|
6 |
Performance differences in encryption software versus storage devicesOlsson, Robin January 2012 (has links)
This thesis looked at three encryption applications that all use the symmetric encryption algorithms AES, Twofish and Serpent but differ in their implementation and how this difference would illustrate itself in performance benchmarks depending on the type of storage device that they were used on. Three mechanical hard drives and one solid state drive were used in the performance benchmarks which measured a variety of different disk operations across the three encryption applications and their algorithms. From the benchmarks performance charts were produced which showed that DiskCryptor had the best performance when using a solid state drive and that TrueCrypt had the best performance when using mechanical hard drives. By choosing DiskCryptor as the encryption application when using a solid state drive a performance increase of 38.9% compared to BestCrypt and 28.4% compared to TrueCrypt was achieve when using the AES algorithm. It was also shown that Twofish was overall the best performing algorithm. The primary conclusion that can be drawn from this thesis is that it is important to choose the right encryption application depending on the type of storage device used in order to get the best performance possible.
|
7 |
Estudo e implementação de ip-cores para Criptografia simétrica baseada no Advanced encryption standard (AES)Ramos Neto, Otacílio de Araújo 31 January 2013 (has links)
Made available in DSpace on 2015-05-14T12:36:39Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1849104 bytes, checksum: 222c0377ddf502eb4a6c7fd2f658bdb1 (MD5)
Previous issue date: 2013-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work addresses data encryption using Rijndael symmetric key encryption algorithm , which is used in Advanced Encryption Standard - AES. AES has massively widespread in computing, communications, and broadcast media applications, due to its robustness. By intensively using of all flavors and sizes of devices and networks, the AES has become the standard at the time of implementation and deployment of these applications when the major requirement, in addition to performance, is security, i.e. virtually all of those applications nowadays. In systems equipped with modern processors, even those on small devices, it is common to find some that perform the encryption and decryption procedures in software. With the "explosive" spread of addition of security layers in almost everything that is processed inside and outside of the devices, even on systems equipped with powerful computing resources, the possibility of performing these layers on (small) additional hardware resources, developed with specific purpose, has become attractive. This dissertation presents a study of the theoretical foundations involving AES, some architectures and implementations based on it and documented in the recent technical and scientific literature, as well as the methodologies and requirements for the development of its hardware implementation, in particular, focusing on mobile systems, where performance has to be achieved in low power consumption and small area scenarios. Reference models have been developed and functionally validated in high-level languages for each hierarchical architectural level compiled from the mentioned study. As a proof of concept, this work consisted in undertaking a project of an intellectual property of digital integrated circuit core (IP core) for the encryption/decryption procedures of AES, starting from the pseudocode level of the algorithms and going to the level of a digital integrated circuit core. Among the solutions studied from recent literature, modules and operations that could be replicated and/or reused were identified. A microarchitecture for the full AES was implemented hierarchically to the core level with standard cells placed and routed. The work also offers three implementation options for the block identified as the most complex: the S-Box. Results of performance and area were then presented and compared with those of literature. / Este trabalho aborda a criptografia de dados com chave simétrica com uso do algoritmo de criptografia Rijndael, que é utilizado no Advanced Encryption Standard - AES. Devido a sua robustez, tem se tornado massivamente difundido em aplicações computacionais, comunicação e de difusão de media. Abrangendo todos os tamanhos e sabores de dispositivos de rede, o AES tem sido o padrão na hora da implementação e disponibilização dessas aplicações quando o requisito principal, além do desempenho, é a segurança, ou seja, praticamente todas as aplicações digitais nos dias de hoje. Em sistemas de processamento dotados dos modernos processadores, mesmo os de pequeno porte, é comum encontrar sistemas que executam os procedimentos de criptografia e decriptografia em software. Com a proliferação "explosiva" da adição de camadas de segurança em quase tudo que é processado dentro e fora dos dispositivos, mesmo em sistemas dotados de poderosos recursos computacionais, tem se tornado atrativa a possibilidade de executar essas camadas em (pequenos) recursos adicionais de hardware, desenvolvidos com finalidade específica. Nesta dissertação, foram estudados os fundamentos teóricos, envolvendo o AES, arquiteturas e implementações documentadas na literatura técnica e científica recente, bem como as metodologias e requisitos específicos para fins de desenvolvimento de sua implementação em hardware, focando, em especial, os sistemas móveis, onde desempenho tem que ser conseguido com baixo consumo de energia e pouca área. Foram desenvolvidos e validados funcionalmente modelos de referência em linguagem de alto nível para cada nível de hierarquia arquitetural compilado do referido estudo. Como prova de conceito, este trabalho consistiu em realizar o projeto de uma propriedade intelectual de núcleo de circuito integrado IP-core, digital para realização dos procedimentos de criptografia/decriptografia do AES, partindo do nível do pseudocódigo dos algoritmos até o nível de um núcleo (core) de circuito integrado digital. Das soluções estudadas na literatura recente, foram identificados módulos e operações passíveis de serem replicadas/reusadas. Uma microarquitetura para o AES completo foi implementada hierarquicamente até o nível de núcleo com standard cells posicionado e roteado, contemplando ainda 3 opções de implementação para o bloco reconhecidamente o mais complexo: o S-Box. Resultados de desempenho e área foram apresentados e comparados.
|
8 |
Symmetric schemes for efficient range and error-tolerant search on encrypted dataChenette, Nathan Lee 05 July 2012 (has links)
Large-scale data management systems rely more and more on cloud storage, where the need for efficient search capabilities clashes with the need for data confidentiality. Encryption and efficient accessibility are naturally at odds, as for instance strong encryption necessitates that ciphertexts reveal nothing about underlying data. Searchable encryption is an active field in cryptography studying encryption schemes that provide varying levels of efficiency, functionality, and security, and efficient searchable encryption focuses on schemes enabling sub-linear (in the size of the database) search time. I present the first cryptographic study of efficient searchable symmetric encryption schemes supporting two types of search queries, range queries and error-tolerant queries. The natural solution to accommodate efficient range queries on ciphertexts is to use order-preserving encryption (OPE). I propose a security definition for OPE schemes, construct the first OPE scheme with provable security, and further analyze security by characterizing one-wayness of the scheme. Efficient error-tolerant queries are enabled by efficient fuzzy-searchable encryption (EFSE). For EFSE, I introduce relevant primitives, an optimal security definition and a (somewhat space-inefficient, but in a sense efficient as possible) scheme achieving it, and more efficient schemes that achieve a weaker, but practical, security notion. In all cases, I introduce new appropriate security definitions, construct novel schemes, and prove those schemes secure under standard assumptions. The goal of this line of research is to provide constructions and provable security analysis that should help practitioners decide whether OPE or FSE provides a suitable efficiency-security-functionality tradeoff for a given application.
|
9 |
Bezpečné kryptografické algoritmy / Safe Cryptography AlgorithmsMahdal, Jakub January 2008 (has links)
This thesis brings a reader an overview about historical and modern world of cryptographic methods, as well evaluates actual state of cryptographic algorithm progressions, which are used in applications nowadays. The aim of the work describes common symmetric, asymmetric encryption methods, cryptographic hash functions and as well pseudorandom number generators, authentication protocols and protocols for building VPNs. This document also shows the basics of the successful modern cryptanalysis and reveals algorithms that shouldn't be used and which algorithms are vulnerable. The reader will be also recommended an overview of cryptographic algorithms that are expected to stay safe in the future.
|
10 |
Kryptoanalýza symetrických šifrovacích algoritmů s využitím symbolické regrese a genetického programování / Cryptanalysis of Symmetric Encryption Algorithms Using Genetic ProgrammingSmetka, Tomáš January 2015 (has links)
This diploma thesis deals with the cryptanalysis of symmetric encryption algorithms. The aim of this thesis is to show different point of view on this issues. The dissimilar way, compared to the recent methods, lies in the use of the power of evolutionary principles which are in the cryptanalytic system applied with help of genetic programming. In the theoretical part the cryptography, cryptanalysis of symmetric encryption algorithms and genetic programming are described. On the ground of the obtained information a project of cryptanalytic system which uses evolutionary principles is represented. Practical part deals with implementation of symmetric encrypting algorithm, linear cryptanalysis and simulation instrument of genetic programming. The end of the thesis represents experiments together with projected cryptanalytic system which uses genetic programming and evaluates reached results.
|
Page generated in 0.1106 seconds