31 |
On the Local and Global Classification of Generalized Complex StructuresBailey, Michael 20 August 2012 (has links)
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases.
In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn.
In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic.
In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
|
32 |
Diffeologies, Differential Spaces, and Symplectic GeometryWatts, Jordan 08 January 2013 (has links)
Diffeological and differential spaces are generalisations of smooth structures on manifolds. We show that the “intersection” of these two categories is isomorphic to Frölicher
spaces, another generalisation of smooth structures. We then give examples of such spaces,
as well as examples of diffeological and differential spaces that do not fall into this category.
We apply the theory of diffeological spaces to differential forms on a geometric quotient
of a compact Lie group. We show that the subcomplex of basic forms is isomorphic to
the complex of diffeological forms on the geometric quotient. We apply this to symplectic
quotients coming from a regular value of the momentum map, and show that diffeological
forms on this quotient are isomorphic as a complex to Sjamaar differential forms. We
also compare diffeological forms to those on orbifolds, and show that they are isomorphic
complexes as well.
We apply the theory of differential spaces to subcartesian spaces equipped with families
of vector fields. We use this theory to show that smooth stratified spaces form a full
subcategory of subcartesian spaces equipped with families of vector fields. We give families
of vector fields that induce the orbit-type stratifications induced by a Lie group action, as
well as the orbit-type stratifications induced by a Hamiltonian group action.
|
33 |
On the Local and Global Classification of Generalized Complex StructuresBailey, Michael 20 August 2012 (has links)
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases.
In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn.
In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic.
In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
|
34 |
Non-Abelian Localization and U(1) Chern-Simons TheoryMcLellan, Brendan 17 February 2011 (has links)
This thesis studies U(1) Chern-Simons theory and its relation to the results of Chris Beasley and Edward Witten (2005). Using the partition function formalism, we are led to compare U(1) Chern-Simons theory as constructed by Manoliu (1998) to the results of Beasley and Witten (2005). This leads to an explicit calculation of the U(1) Chern Simons partition function on a closed Sasakian three-manifold and opens the door to studying rigorous extensions of this theory to more general gauge groups and three-manifold geometries.
|
35 |
Geometric mechanicsRosen, David Matthew, 1986- 24 November 2010 (has links)
This report provides an introduction to geometric mechanics, which seeks to model the behavior of physical mechanical systems using differential geometric objects. In addition to its elegance as a method of representation, this formulation also admits the application of powerful analytical techniques from geometry as an aid to understanding these systems. In particular, it reveals the fundamental role that symplectic geometry plays in mechanics (something which is not at all obvious from the traditional Newtonian formulation), and in the case of systems exhibiting symmetry, leads to an elucidation of conservation and reduction laws which can be used to simplify the analysis of these systems. The contribution here is primarily one of exposition. Geometric mechanics was developed as an aid to understanding physics, and we have endeavored throughout to highlight the physical principles at work behind the mathematical formalism. In particular, we show quite explicitly the entire development of mechanics from first principles, beginning with Newton's laws of motion and culminating in the geometric reformulation of Lagrangian and Hamiltonian mechanics. Self-contained presentations of this entire range of material do not appear to be common in either the physics or the mathematics literature, but we feel very strongly that this is essential in order to understand how the more abstract mathematical developments that follow actually relate to the real world. We have also attempted to make many of the proofs contained herein more explicit than they appear in the standard references, both as an aid in understanding and simply to make them easier to follow, and several of them are original where we feel that their presentation in the literature was unacceptably opaque (this occurs primarily in the presentation of the geometric formulation of Lagrangian mechanics and the appendix on symplectic geometry). Finally, we point out that the fields of geometric mechanics and symplectic geometry are vast, and one could not hope to get more than a fragmentary glimpse of them in a single work, which necessiates some parsimony in the presentation of material. The subject matter covered herein was chosen because it is of particular interest from an applied or engineering perspective in addition to its mathematical appeal. / text
|
36 |
Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectiqueVichery, Nicolas 22 October 2012 (has links) (PDF)
Dans une première partie, nous développerons la théorie de l'homogénéisation symplectique ainsi que ses applications à la théorie de Mather et à la rigidité symplectique. Les invariants spectraux lagrangiens seront l'outil de base de ce travail. Dans une seconde partie, nous rappelerons les toutes nouvelles applications de la théorie des faisceaux aux problèmes de non déplaçabilité. Nous formulerons ce que nous pensons être l'équivalent de l'homologie de Floer dans ce cas là et les invariants spectraux. Puis, à l'aide de ces outils nous prouverons la non-déplaçabilité de sous-variétés lagrangiennes non exactes du cotangent. Ensuite, nous parlerons des applications à la topologie symplectique $C^0$ et à l'optimisation non lisse.
|
37 |
Problèmes de plongements en géométrie symplectiqueOpshtein, Emmanuel 03 July 2014 (has links) (PDF)
Ce mémoire concerne les phénomènes de rigidité/flexibilité liés aux plongements et leurs applications en topologie symplectique. Les deux grands thèmes abordés sont les plongements symplectiques équidimensionnels en dimension 4 et la géometrie symplectique C^0.
|
38 |
Introduction à quelques aspects de quantification géométrique.Aubin-Cadot, Noé 08 1900 (has links)
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier.
Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références. / We review some differential geometric prerequisite needed for an initial approach of the geometric quantization theory, i.e. basic notions in symplectic geometry, Lie group, Lie group action, principal G-bundle, connection, associated bundle, almost-complex structure. This leads to an in-depth study of Hermitian line bundles that leads to an existence condition for a prequantum line bundle over a symplectic manifold. With these tools, we start a study of geometric quantization, step by step. We introduce the prequantization theory, which is the construction of operators associated to classical observables and construction of a Hilbert space. Some major problems arise when applying prequantization in concrete examples : the obtained operators are not exactly those expected by first quantization and the constructed Hilbert space is too big. A first correction, polarization, corrects some problems, but greatly limits the set of classical observables that we can quantize.
This dissertation is not a complete survey of geometric quantization, which is not its goal. It's not covering metaplectic correction, neither BKS kernel. It's a side lecture for those introducing themselves to geometric quantization. First, it's introducing differential geometric concepts taken for granted in (Woodhouse [21]) and (Sniatycki [18]), i.e. principal G-bundles and associated bundles. Secondly, it adds details to some brisk proofs given in these two last references.
|
39 |
Diffeologies, Differential Spaces, and Symplectic GeometryWatts, Jordan 08 January 2013 (has links)
Diffeological and differential spaces are generalisations of smooth structures on manifolds. We show that the “intersection” of these two categories is isomorphic to Frölicher
spaces, another generalisation of smooth structures. We then give examples of such spaces,
as well as examples of diffeological and differential spaces that do not fall into this category.
We apply the theory of diffeological spaces to differential forms on a geometric quotient
of a compact Lie group. We show that the subcomplex of basic forms is isomorphic to
the complex of diffeological forms on the geometric quotient. We apply this to symplectic
quotients coming from a regular value of the momentum map, and show that diffeological
forms on this quotient are isomorphic as a complex to Sjamaar differential forms. We
also compare diffeological forms to those on orbifolds, and show that they are isomorphic
complexes as well.
We apply the theory of differential spaces to subcartesian spaces equipped with families
of vector fields. We use this theory to show that smooth stratified spaces form a full
subcategory of subcartesian spaces equipped with families of vector fields. We give families
of vector fields that induce the orbit-type stratifications induced by a Lie group action, as
well as the orbit-type stratifications induced by a Hamiltonian group action.
|
40 |
Introduction à quelques aspects de quantification géométriqueAubin-Cadot, Noé 08 1900 (has links)
No description available.
|
Page generated in 0.0922 seconds