• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Systemes Integrables en Mecanique Classique et Quantique

Zeitlin, Vadim 27 September 2002 (has links) (PDF)
Notre motivation principale dans cette thèse est de développer des méthodes d'étude des systèmes intégrables classiques qui se généralisent directement aux systèmes intégrables quantiques. Pour cela nous commençons par construire explicitement, en utilisant des outils de la géométrie algébrique et les idées de la méthode de séparation des variables, un modèle matriciel de la jacobienne affine d'une courbe spectrale d'ordre $N$ quelconque, généralisant ainsi la construction précédemment connue seulement pour le cas hyperelliptique ($N=2$). A l'aide de ce modèle nous étudions ensuite les cohomologies singulières de la jacobienne affine et nous trouvons une formule nouvelle pour sa caractéristique d'Euler. En étudiant son comportement nous montrons que la structure des cohomologies est bien plus compliquée, dans le cas général, que dans le cas hyperelliptique. Du point de vue des systèmes intégrables notre résultat principal est que l'algèbre des observables est engendrée par l'action des certains champs hamiltoniens sur un nombre fini des coefficients des cohomologies supérieures. Cette observation est surtout importante dans le cas quantique auquel touts nos résultats s'appliquent aussi, en accord avec le programme de ce travail . En effet, ceci implique que les fonctions de corrélation de n'importe quelle observable s'expriment en termes des fonctions de corrélations d'un nombre fini de coefficients des cohomologies supérieures (déformés). Finalement, en utilisant les résultats connus pour le cas hyperelliptique et des considérations semi-classiques, nous formulons une conjecture sur la structure du produit scalaire dans l'espace de Hilbert où l'algèbre des observables quantiques est représentée.
2

Séparation des variables et facteurs de forme des modèles intégrables quantiques

Grosjean, Nicolas 25 June 2013 (has links) (PDF)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles.
3

Séparation des variables et facteurs de forme des modèles intégrables quantiques / Separation of variables and form factors of quantum integrable models

Grosjean, Nicolas 25 June 2013 (has links)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles. / Form factors and correlation functions determine the measurable dynamic quantities that are associated with field theories and statistical physics models. In the case of 2-dimensional integrable models, one of the main challenges beyond spectrum properties and partition function is the exact computation of form factors and correlation functions.The aim of this thesis is to develop an approach in the framework of Sklyanin's separation of variables to address this problem. This framework generalizes to the quantum case and for systems with many degrees of freedom the Hamilton-Jacobi method from analytical mechanics. The Hamiltonian is expressed in terms of separated operators, its spectrum and eigenvectors are characterized by a system of Baxter equations. These Baxter equations are a consequence of Yang-Baxter relations that are characteristic of these models being integrable.The result of this thesis is, in the case of the sine-Gordon model (quantum field theory) and of the chiral Potts model (statistical physics model), the computation of scalar products of Hamiltonian eigenstates, the resolution of the inverse problem (expressing the model operators in terms of separated variables) and the computation in terms of determinant of form factors (the matrix elements of the model local operators in the Hamiltonian eigenbasis), which is an important step towards the computation of the correlation functions of these models.
4

Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable

Levy-Bencheton, Damien 22 October 2013 (has links) (PDF)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ.
5

Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable / Dynamical Yang-Baxter algebra and correlation functions of the integrable SOS model

Levy-Bencheton, Damien 22 October 2013 (has links)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ. / A current challenge in the field of quantum integrable systems is the exact and explicit computation of correlation functions. In simple models such as the XXZ spin 1/2 Heisenberg chain, some significant results have been obtained during the last years. The developed methods essentially use the symmetries of the models in infinite volume (quantum affine algebra) or finite volume (Yang-Baxter algebra). The aim of this thesis is to generalize the scope of the latter approaches to the case where the underlying Yang-Baxter algebra is of dynamical type. This is typically the case of the statistical mechanics solid-on-solid (SOS) model which describes the interactions of a height parameter around faces of a bidimensional lattice, and whose statistical weights are given by an elliptic R-matrix which is solution of the dynamical Yang-Baxter equation.The study of correlation functions of the SOS model is discussed in the framework of the algebraic Bethe ansatz and the separation of variables. Representations in terms of determinants of usual functions are obtained by these two methods for the scalar products of states and for form factors of local operators in finite volume. The obtained formula in the framework of the algebraic Bethe ansatz are then used to represent the two-point function as multiple integrals, and also to compute various physical quantities at the thermodynamic limit, such as the spontaneous polarizations or the local height probabilities. The latter can be expressed in terms of multiple integrals of contour, which are really similar to the ones obtained in the XXZ model.
6

Systèmes intégrables quantiques. Méthodes quantitatives en biologie.

Feverati, Giovanni 13 December 2010 (has links) (PDF)
Les systèmes intégrables quantiques ont des propriétés mathématiques qui permettent la détermination exacte de leur spectre énergétique. A partir des équations de Bethe, je présente la relation de Baxter «T-Q». Celle-ci est à l'origine des deux approches que j'ai prioritairement employé dans mes recherches, les deux basés sur des équations intégrales non linéaires, celui de l'ansatz de Bethe thermo- dynamique et celui des équations de Klümper-Batchelor-Pearce-Destri-de Vega. Je montre le chemin qui permet de dériver les équations à partir de certain modèles sur réseau. J'évalue les limites infrarouge et ultraviolet et je discute l'approche numérique. D'autres constantes de mouvement peuvent être établies, ce qui permet un certain contrôle sur les vecteurs propres. Enfin, le modèle d'Hubbard, qui décrit des électrons interagissants sur un réseau, est présenté en relation à la théorie de jauge supersymétrique N = 4. Dans la deuxième partie, je présente un modèle d'évolution darwinienne basé sur les machines de Turing. En faisant évoluer une population d'algorithmes, je peut décrire certains aspects de l'évolution biologique, notamment la transformation entre parties codantes et non-codantes dans un génome ou la présence d'un seuil d'erreur. L'assemblage des protéines oligomériques est un aspect important qui intéresse la majorité des protéines dans une cellule. Le projet «Gemini» que j'ai contribué à créer a pour finalité d'explorer les donnés structuraux des interfaces des dites protéines pour différentier le rôle des acides aminés et déterminer la présence de patterns typiques de certaines géométries.

Page generated in 0.0869 seconds