1 |
Modulating System xc- Activity As A Treatment For EpilepsyAlcoreza, Oscar Jr. 28 May 2021 (has links)
Epilepsy is a neurological disorder that presents a significant public health burden, with an estimated five million people being newly diagnosed each year. However, current therapeutics designed to modify neuronal processes, provide no relief to 1-in-3 epileptic patients. Additionally, no disease modifying therapies currently exist to treat the underlying pathological processes involved in epileptogenesis. The overarching goal of this project is to further characterize the role astrocytes play in epileptogenesis, in hopes of revealing novel therapeutic targets to benefit patients who otherwise have no effective treatment options. System xc- (SXC), a cystine/glutamate antiporter expressed in astrocytes, is one such target that has been shown to play a critical role in establishing ambient extracellular glutamate levels in both health and disease. SXC has been shown to play a major role in setting ambient glutamatergic tone in the central nervous system (CNS) as pharmacological inhibition of SXC, using (S)-4-carboxyphenylglycine (S-4-CPG) or antisense xCT, resulted in a 60% reduction in extrasynaptic glutamate in the nucleus accumbens. Additionally, investigations in tumor-associated epilepsy revealed that overexpression of SXC seen in glioblastomas lead to higher levels of peritumoral glutamate, neuronal excitotoxicity, and ultimately seizures. These studies also found that SXC inhibition with sulfasalazine (SAS), an FDA approved drug and potent inhibitor of SXC, can ameliorate seizure burden in a glioblastoma mouse model. Therefore, the principal objective of this study is to further investigate the role of astrocytic SXC activity in epileptogenesis and seizure generation. In doing so, we also evaluated the efficacy of SAS in reducing seizure burden in vivo using an astrogliosis-mediated epilepsy mouse model. In this dissertation we show that (1) SXC inhibition, using SAS, is able to decrease induced epileptiform activity in multiple models of chemically induced hyperexcitability (2) this is due to a preferential decrease of NMDAR-mediated currents and (3) SXC inhibition, via SAS, decreases seizure burden in vivo in an astrogliosis-mediated epilepsy model. / Doctor of Philosophy / Epilepsy, characterized by unpredictable seizures, affects approximately 2.2 million Americans, with 150,000 new cases being diagnosed each year. Seizures typically occur when there is an imbalance between the excitatory and inhibitory processes in the brain. Because neurons are the primary cell in the brain that carry out these processes, clinically used anti-epileptic drugs (AEDs) work by either decreasing neuronal excitation or increasing neuronal inhibition. Despite success with managing seizures, up to 1-in-3 patients with epilepsy do not find any relief with existing AEDs. A statistic that has not changed in over 50 years of drug development. With this in mind, the overarching goal of this dissertation is to explore the efficacy of targeting non-neuronal processes to treat epilepsy and broaden the search for new AED targets by further characterizing a unique mouse model of epilepsy. One such target studied in our lab is system xc- (SXC), a glutamate/cystine antiporter present on astrocytes, a non-neuronal cell that provides maintenance, support and protection for neurons. Investigations in tumor-associated epilepsy from our lab revealed that hyperactivity of SXC in tumor cells was directly related to the development of tumor-associated epilepsy. These studies also revealed that SXC inhibition using sulfasalazine (SAS), an FDA approved drug, can decrease seizure burden in a tumor mouse model. Therefore, the principal objective of this study is to further investigate the role of astrocytic SXC activity in the development of epilepsy and seizure generation. In this dissertation we show that SXC inhibition, using SAS, is able to decrease neuronal hyperactivity and decreases seizure burden in an astrogliosis-mediated epilepsy model.
|
2 |
Studies of the Neuroimmune Response in Cancer-Induced PainMiladinovic, Tanya 03 1900 (has links)
Cancer-induced pain (CIP) is a debilitating condition that accompanies late-stage cancer for the majority of patients. The work presented in this dissertation addresses the multifaceted role of glutamate in cancer cell-induced pain signalling and provides several potential therapeutic directions. Several cell types, including breast cancer cells and microglia, release glutamate via the system xC- antiporter. To limit the excitotoxic tendency of breast cancer cells to release glutamate in excess, we first indirectly inhibited xCT, the active subunit of system xC-, with the TrkA inhibitor AG879. We demonstrated that the system xC- antiporter is functionally influenced by the actions of nerve growth factor on its cognate receptor, TrkA, and that inhibiting this complex reduced CIP via downstream actions on xCT. Co-culture studies then demonstrated the direct effect of glutamate released by wildtype MDA-MB-231 carcinoma cells on microglial activation, as well as functional system xC- activity, while knockdown of xCT in MDA-MB-231 cells mitigated microglial activation and cystine uptake. Blockade of system xC- with sulfasalazine attenuated nociception in an immunocompetent murine model of CIP and inhibited tumour-induced microglial activation in the dorsal horn of the spinal cord. Finally, tumour-induced nociceptive behaviours appeared to progress in parallel with microglial activation in the hippocampus, and ablating microglia delayed the onset and severity of tumour-induced nociceptive behaviours, confirming that microglia are implicated in CIP and regional microglia are influenced by this pain. This is the first experimental evidence to demonstrate the effects of peripheral tumour on hippocampal microglial activation in relation to cancer-related nociception. These data collectively demonstrate that the system xC- antiporter is functionally implicated in CIP and may be particularly relevant to pain progression through spinal microglia. Upregulated xCT in chronically activated microglia may be one pathway to central glutamate cytotoxicity. Therefore, microglial xCT may therefore be a valuable target for mitigating CIP. / Thesis / Doctor of Philosophy (Medical Science) / Cancer-induced pain (CIP) is a debilitating condition that accompanies late-stage metastatic cancer. Clinically, achieving analgesia often comes at the expense of patients’ quality of life, as current therapeutics fail to adequately manage this pain and induce dose-dependent side effects. Cancer cells secrete excess amounts of glutamate, a signalling molecule involved in CIP, which can activate immune cells called microglia within the spinal cord. Mice that demonstrate tumour-induced pain exhibit an amplified immune response that manifests through the activation pattern and quantity of microglia within the spinal cord, as well as brain regions implicated in pain and distress. Pharmacologically blocking glutamate release from cancer cells limits this pain response, in addition to several physiological indicators of pain, including microglial activation in the central nervous system. Changes in microglia-related glutamate signalling may reflect the emotional problems reported by patients with CIP. Better understanding the mechanisms of CIP will help generate more comprehensive treatment approaches.
|
3 |
Glutamatstoffwechsel in Glioblastoma multiforme WHO-Grad IVSchäfer, Julia Astrid 08 March 2018 (has links)
No description available.
|
4 |
System xc- Mediated Glutamate Transport Inhibition in Cancer-Induced Bone PainUngard, Robert G. January 2012 (has links)
<p>Breast cancers are the most common source of metastases to bone of which cancer-induced bone pain is a frequent pathological feature. Cancer-induced bone pain is a unique pain state with a multiplicity of determinants that remains to be well understood and managed. Current standard treatments are limited by dose-dependent side effects that can depress the quality of life of patients. Glutamate is a neurotransmitter and bone cell-signalling molecule that has been found to be released <em>via</em> the system x<sub>C</sub><sup>-</sup>cystine/glutamate antiporter on cancer cells of types that frequently metastasize to bone, including breast cancers. This project examines the hypothesis that limiting glutamate release from cancer cells metastasized to bone will reduce bone tissue disruption and cancer-induced bone pain. A mouse model of cancer-induced bone pain was established with intrafemoral human breast cancer cells (MDA-MB-231), and behavioural measurements were taken for weight bearing and induced paw withdrawal thresholds. The system x<sub>C</sub><sup>-</sup> inhibitors sulfasalazine and (S)-4-carboxyphenylglycine both attenuated glutamate release from cancer cells in a dose-dependent manner <em>in vitro</em>. Treatment with sulfasalazine induced a moderate delay in the onset of behavioural indicators of pain in mouse models, and treatment with (S)-4-carboxyphenylglycine had no apparent results. This data suggests that the limitation of extracellular glutamate released from cancers in bone with sulfasalazine may provide some alleviation of the often severe and intractable pain associated with bone metastases.</p> / Master of Science (MSc)
|
5 |
Synthesis and Biological Evaluation of Anti-cancer Agents and Identification of Their Molecular TargetsDlamini, Samkeliso 15 September 2022 (has links)
No description available.
|
6 |
Studies on the Pathophysiology of Cancer-Induced DepressionNashed, Mina G. 27 May 2016 (has links)
Despite the lack of robust clinical response, treatment strategies for cancer-induced depression (CID) are currently limited to those developed for non-cancer-related depression. The work presented in this dissertation conceptualizes CID as a pathophysiologically distinct form of depression. To investigate CID at the most basic level, we first developed a preclinical model that was validated by comparison to an established model of stress-induced depressive-like behaviours. The positive control model was developed by chronically treating female BALB/c mice with oral corticosterone (CORT). The CID model was developed using subcutaneous inoculation with 4T1 mammary carcinoma cells. Anhedonia, behavioural despair, and dendritic atrophy in the medial prefrontal cortex (mPFC) were observed in both models. Similar to many human cancer cell lines, 4T1 cells were shown to secrete significant amounts of glutamate, which was markedly attenuated using the system xc- inhibitor sulfasalazine (SSZ). In CID mice, oral treatment with SSZ was at least as effective as fluoxetine, a popular clinical antidepressant, at preventing depressive-like behaviours. This effect was primarily attributable to intact SSZ, rather than its anti-inflammatory metabolite. RNA-sequencing was performed on hippocampal samples from CID and CORT animals. Analysis of differential expressed genes (DEGs) revealed significant overlap between the two models. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and biological process gene ontologies (GO:BP) terms related to ion homeostasis and neuronal communication were enriched for both models. CID was associated with additional DEGs that were not identified in the CORT model. These DEGs were enriched in KEGG pathways and GO:BP terms related to neuronal development, intracellular signalling cascade, learning, and memory. These studies suggest that CID may involve a distinct aetiology, and that glutamate secretion by cancer cells presents a viable target for antidepressant treatment. The development of mechanism-based therapeutics for CID will dramatically improve the quality of life for cancer patients. / Thesis / Doctor of Philosophy (PhD) / Cancer patients are at a high risk of developing depression. In addition to the psychological stress caused by a cancer diagnosis, there is evidence that cancer causes depression through biological pathways. To investigate these pathways, a mouse model of cancer-induced depression (CID) was developed. This model showed comparable behavioural and structural brain deficits to those observed in a stress model of depression. Cancer cells secrete elevated levels of glutamate, a signalling molecule that is involved in depression. In CID mice, inhibiting glutamate release had an antidepressant effect similar to that of fluoxetine, a standard clinical antidepressant. A genetic analysis on brain samples from the CID model revealed significant overlap with the stress model of depression. CID mice had additional changes relevant to learning, memory, and brain cell development that were not detected in the stress model. A better understanding of CID will lead to better treatment strategies developed specifically for cancer patients.
|
7 |
STUDIES ON THE PATHOPHYSIOLOGY OF CANCER-INDUCED BONE PAINUngard, Robert G January 2020 (has links)
Metastatic bone cancers cause severe symptoms including pain that compromises patient functional status, quality of life, and survival. Current treatment strategies have limited efficacy and dose-limiting side effects. Cancer-induced bone pain (CIBP) is a unique pain state that shares features with but is distinct from the pathology of neuropathic and inflammatory pain. This dissertation investigates how CIBP is generated and maintained by the direct effects of cancer cells on their metastatic microenvironment and the peripheral nervous system, including unique signaling properties and gene expression changes. In particular, we found that genetic knockdown of the functional subunit xCT of the system xC- cystine/glutamate antiporter can reduce CIBP, further elucidating this as a therapeutic of interest. We found that the neuroprotective voltage-gated calcium channel inhibitors progesterone and pregabalin markedly reduce mechanical hypersensitivity and excitability in sensory neurons of the dorsal root ganglion (DRG) in male rat models of neuropathic pain, but that these effects and less pronounced in females. In cancer pain, these sex differences are reversed, with females but not males demonstrating a delay in time-to-onset of mechanical hypersensitivity. We also analyzed gene expression at the DRG by RNA-Sequencing of rat models of CIBP. Our findings uncovered differential gene expression between CIBP and sham controls and between ipsilateral and contralateral DRGs in CIBP model rats. These studies have identified several promising avenues for therapeutic research for CIBP. / Dissertation / Doctor of Philosophy (PhD) / The tools we have right now to manage severe and chronic pain are insufficient. Patients with advanced cancers including bone cancer can suffer from very severe pain. This pain is generated in a number of ways including by the tumour itself releasing chemicals that activate pain-sensing nerves, by the destruction of the bone in and around the tumour, and by the sensitization of the nervous system, which can make pain worse and longer lasting. We have taken three approaches to researching cancer pain and to investigating new treatments. We have found that by reducing the amount of glutamate that cancer cells can release into their environment, we can reduce cancer pain in mice. We also found that treating rats with pregabalin and progesterone can change nerve signaling and reduce neuropathic pain, but that this effect is most pronounced in male rats with neuopathic pain and smaller in female rats with neuropathic pain, and even smaller in rats with cancer pain. We also analyzed expression of all the protein-coding genes in dorsal root ganglia from rats with cancer pain and found that there are many differences from rats without pain. Some of these differences may be promising new research targets. Going forward this research has provided important evidence necessary for next steps to develop new therapies and research strategies for cancer pain.
|
8 |
GLIOBASTOMA MULTIFORME UTILIZES SYSTEM Xc¯ FOR SURVIVAL UNDER OXIDATIVE STRESS AND PROMOTES CHEMORESISTANCEReveron, Rosyli F 01 June 2014 (has links)
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and is the most aggressive malignant primary brain tumor in adults. Without treatment, patients are expected to survive an average of three months. Conversely, current treatment regimens only extend survival to 12-14 months. Characteristically, GBM tumors are highly proliferative, invasive and stop responding to treatments relatively fast due to therapy resistance. Interestingly, GBM also exhibits high metabolic activity but manages to maintain a low level of reactive oxygen species (ROS). These ROS neutralization capabilities are sustained by system Xc–, a sodium-independent, electro neutral transporter that is found in the plasma membrane of GBM cells. System Xc– is composed of a regulatory heavy subunit (4F2hc) linked to a 12 transmembrane domain catalytic light chain subunit (xCT) that mediates the uptake of L-cystine into the cell, and L-glutamate out of the cell, at a 1:1 ratio. Imported cystine is quickly reduced to L- cysteine, the rate limiting substrate in glutathione (GSH) synthesis. Glutathione is a major antioxidant in the central nervous system that is responsible for maintaining intracellular redox homeostasis by neutralizing ROS by direct and indirect methods. The function of chemo and radiation therapy is to generate significant levels of ROS that tigger the cell to undergo apoptosis. High intracellular GSH levels in cancer cells are associated with drug resistance and detoxification of alkylating agents such as temozolomide (TMZ). Therefore, system Xc– represents a potential target to reduce glioma cell survival and reduce tumor progression. Sulfasalazine is an FDA approved drug in the treatment of arthritis and Crohne’s disease and has been shown to inhibit system Xc–. In vitro SASP studies demonstrated a strong antitumor potential in preclinical mouse models of malignant glioma. However, two clinical trials using sulfasalazine with standard chemo and radiation therapy to treat GBM patients were terminated due to off-target effects. Both results showed high toxicity and no change in the overall survival of patients. These studies demonstrate the need for a more effective inhibitor of system Xc–. To further elucidate the role of system Xc– in GBM survival, stable xCT knock-down and over-expressing U251 glioma cells were generated. These lines were characterized for survival, proliferation, apoptosis and resistance to oxidative and genotoxic insult. As expected xCT-knockdown cells exhibited lower GSH levels, increased intracellular ROS and markers for apoptosis after oxidative and genotoxic insult. The xCT-over-expressing cells displayed higher levels of GSH, increased resistance to hydrogen peroxide and various chemotherapy drugs including TMZ. An interesting unforeseen result of xCT over-expression in glioma cells was an increase in the metabolic activity as a result of increased mitochondria. Using xCT-modified glioma lines stably, we demonstrate for the first time that system XC– over-expression not only promotes survival under oxidative stress but may also decreases sensitivity to chemotherapy treatment and increase metabolic properties. Therefore, therapeutic manipulation of this transporter either alone or in combination with other treatments may improve clinical outcome in patients diagnosed with GBM.
|
Page generated in 0.0611 seconds