Spelling suggestions: "subject:"tss""
41 |
Identification and characterization of type III effector proteins in plant-associated bacteriaThomas, William J. 04 May 2012 (has links)
Symbioses between microbes and multicellular eukaryotes are found in all biomes, and encompass a spectrum of symbiotic lifestyles that includes parasitism and disease, commensalism, and mutually beneficial interdependent host-microbe relationships. Regardless of outcome, these symbiotic lifestyles are governed by a complex molecular "courtship" between microbe and potential host. This courtship is the primary determinant of the host range of a given microsymbiont. Host immunity poses a formidable barrier to the establishment of host-microbe relationships, and the majority of microbial suitors will be thwarted by it. Only by successfully "wooing" the host cell's immune defenses with the appropriate molecular signals can a microsymbiont successfully colonize its host.
A strategy common to microsymbionts across the spectrum of symbiotic lifestyles and host organisms is the delivery of microbial-encoded effector proteins into the cytoplasm of host cells to manipulate the host cell's molecular machinery for the purposes of subverting host immunity. Bacteria, in particular, have adapted a number of secretion systems for this purpose. The most well-characterized of these is the type III secretion system (T3SS), a molecular apparatus that specializes in injecting type III effector (T3Es) proteins directly into host cells. The work in this thesis focuses on T3Es of plant-associated bacteria, with particular emphasis on mutualistic bacteria. We present evidence that collections of T3Es from Sinorhizobium fredii and Bradyrhizobium japonicum are, in stark contrast to those of phytopathogenic bacteria, in a co-evolutionary equilibrium with their hosts. This equilibrium is characterized by highly conserved T3E collections consisting of many "core" T3Es with little variation in nucleotide sequence. The T3Es of Mesorhizobium loti MAFF303099 suggest a completely different picture of the evolution of T3Es. MAFF303099 recently acquired its T3SS locus, and the work in this thesis provides an evolutionary snapshot of a mutualist that is innovating a T3E collection primarily through horizontal gene transfer. Collectively, this work represents the first comprehensive catalog of T3Es of rhizobia and, in the case of Sinorhizobium and Bradyrhizobium, the first evidence of purifying selection for T3Es. / Graduation date: 2012
|
42 |
Genes do metabolismo do nitrogênio e suas implicações na patogenicidade e virulência da Xanthomonas citri subsp. citri / Genes of nitrogen metabolism and its implications in the pathogenicity and virulence of Xanthomonas citri subsp. citriAmorim, Julie Anne Espíndola 27 April 2018 (has links)
Submitted by JULIE ANNE ESPÍNDOLA AMORIM (julie__anne@hotmail.com) on 2018-06-05T18:33:56Z
No. of bitstreams: 1
Tese_23-03-18-final_corrigida_05-06-2018_Juliecorrigidapdf.pdf: 3073465 bytes, checksum: 1673cd431dca7fe8472ab9ce8185182f (MD5) / Approved for entry into archive by Alexandra Maria Donadon Lusser Segali null (alexmar@fcav.unesp.br) on 2018-06-05T18:59:54Z (GMT) No. of bitstreams: 1
amorim_jae_dr_jabo.pdf: 3073465 bytes, checksum: 1673cd431dca7fe8472ab9ce8185182f (MD5) / Made available in DSpace on 2018-06-05T18:59:54Z (GMT). No. of bitstreams: 1
amorim_jae_dr_jabo.pdf: 3073465 bytes, checksum: 1673cd431dca7fe8472ab9ce8185182f (MD5)
Previous issue date: 2018-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O cancro cítrico tipo A, causado pela bactéria Xanthomonas citri subsp. citri (XccA), é uma das doenças de citros mais importantes, afetando todas as cultivares comerciais, para a qual não existem ainda estratégias de controle eficientes. Os genes ntrB e ntrC codificam, respectivamente, a histidina quinase (HK) e o regulador de respostas (RR), pertencentes a um sistema de dois componentes (TCSs), que atuam no sistema regulador de nitrogênio (NTR). Porém, o possível papel desses genes na virulência da XccA e de outros fitopatógenos ainda não foi elucidado. Este estudo teve como objetivo investigar os efeitos dos genes ntrB e ntrC no desenvolvimento do cancro cítrico em limão-cravo (Citrus limonia Osbeck), bem como a possível relação desses genes com a regulação da expressão de genes do sistema de secreção tipo 3 (SST3), considerado um dos principais fatores de virulência da XccA. Os mutantes ΔntrB e ΔntrC foram obtidos pela técnica de mutagênese sítio-dirigida por reação em cadeia da polimerase de extensão por sobreposição. A mutação dos genes causou redução na sintomatologia do cancro cítrico e diminuição da população bacteriana no espaço intercelular do tecido foliar da planta. A análise das curvas de crescimento in vitro revelou que a ausência do gene ntrB não alterou a viabilidade da bactéria, enquanto a mutação do gene ntrC afetou o “fitness” bacteriano em meio de cultura NB. Análises in vitro indicaram que o mutante ΔntrC formou duas vezes mais biofilme e produziu cinco vezes mais goma xantana do que a XccA 306 in vitro. A expressão dos genes (hpa1, hrpG, hrpX, hrpE, hrpW e hrpD6) do SST3 avaliados foi significativamente maior (p < 0,05) no mutante ΔntrC do que na XccA 306 e no ΔntrB, indicando que ntrC possa atuar na regulação do SST3. Porém, o nível de expressão desses genes no mutante ΔntrB não apresentou diferença significativa (p > 0,05) em relação à XccA 306. A modelagem molecular revelou semelhança estrutural entre as regiões receptoras de NtrC e HrpG, sugerindo que a fosforilação de HrpG por NtrB possa ocorrer in vivo. Em síntese, os resultados obtidos neste estudo indicam que a mutação dos genes ntrB e ntrC afeta o desenvolvimento do cancro cítrico em limão-cravo e que o gene ntrC pode atuar na regulação dos mecanismos de formação de biofilme, produção de goma xantana e expressão de genes do SST3 e/ou que a ausência desse gene ocasione um desequilíbrio celular na XccA 306, resultando na alteração desses mecanismos, enquanto NtrB pode apresentar papel na regulação de genes do SST3 por meio da fosforilação de HrpG. / The citrus canker type A, provoked by the bacterium Xanthomonas citri subsp. citri (XccA), is one of themost important citrus diseases, affecting all the commercial cultivars, for which there are no effective control strategies. The ntrB and ntrC genes encode a histidine kinase (HK) and the response regulator (RR), respectively, belong to a two-component system (TCSs), related to the nitrogen regulatory system (NTR). However, the possible role of ntrB and ntrC genes in the virulence of XccA and other phytopathogens has not yet been elucidated. Therefore, the aim of this study was to investigate the impact of the ntrB and ntrC genes on the development of citrus canker in rangpur lime (Citrus limonia Osbeck), as well as the possible relation of ntrB and ntrC genes with the regulation of the type 3 secretion system (T3SS) gene expression, which is considered one of the main virulence factors of XccA. The ΔntrB and ΔntrC were obtained by site-directed mutagenesis through overlap extension polymerase chain reaction. The mutation of the ntrB and ntrC genes caused a reduction of the citrus canker symptoms, and decrease of the bacterial population in the intracellular space of the foliar tissue of the plant. In vitro growth curves analysis revealed that the ΔntrB did not affect the viability of the bacterium, whereas the ΔntrC affected the bacterial fitness in NB culture medium. In vitro analysis indicated that the ΔntrC formed 2x more biofilm, and produced 5x xanthan gum compared to the XccA 306. The T3SS related genes (hpa1, hrpG, hrpX, hrpE, hrpW and hrpD6) expression was significantly higher (p <0.05) in the ΔntrC than in the XccA 306 and the ΔntrB, indicating that ntrC can modulate the regulation of T3SS. However, the level of expression of these genes in the ΔntrB did not differ (p> 0.05) in relation to the XccA 306. Molecular modeling revealed structural similarity between NtrC and HrpG receptors motifs, suggesting that phosphorylation of HrpG by NtrB may occur in vivo. Overall, the results obtained in this study strongly suggest that the mutation of the ntrB and ntrC genes affect the development of rangpur lime citrus canker and that ntrC gene may play an important role in the regulation of the mechanisms of biofilm formation, xanthan gum production and T3SS gene expression and/or that the absence of this gene causes a cellular imbalance in XccA 306 resulting in the alteration of these mechanism, whereas the NtrB may have a role with the regulation of T3SS genes by phosphorylation of HrpG. / 3385/2013
|
43 |
Le système de sécrétion de type III de Shigella flexneri: étude de sa machinerie et hiérarchie de sécrétion / Type III secretion system of Shigella flexneri: study of its secretion machinery and hierarchyCherradi, Youness 16 October 2013 (has links)
Les bactéries du genre Shigella sont responsables de la shigellose, une maladie diarrhéique invasive du colon. L’entrée et la dissémination de Shigella à travers l’épithélium colique sont médiées par un système de sécrétion de type III (SST3) codé par un plasmide de virulence. Au sein de ce plasmide se trouve une région de 30-kb comportant les gènes impliqués dans l’entrée de la bactérie dans les cellules hôtes. Ces gènes sont regroupés en deux loci :le locus ipa-ipg qui code pour les protéines sécrétées et leurs chaperons ainsi que le locus mxi-spa codant pour les composants de l’appareil de sécrétion de type III (AST3), constitué d’un bulbe cytoplasmique, d’un corps basal transmembranaire et d’une aiguille se projetant au niveau extracellulaire. Ce système permet la sécrétion ordonnée et hiérarchique de différentes classes de protéines et la translocation de certaines d’entre elles (appelées effecteurs) dans le cytoplasme de la cellule hôte où elles interfèrent avec les voies de signalisation cellulaires. Avant le contact avec la cellule hôte, l’AST3 est inactif et verrouillé par les protéines IpaB et IpaD formant le complexe d’extrémité.<p>Chez Shigella, le gatekeeper MxiC séquestre les effecteurs au niveau du cytoplasme bactérien avant la transmission par l’aiguille du signal d’activation de la sécrétion mais les composants intermédiaires liant l’aiguille à MxiC restaient inconnus. Au cours de ce travail, nous avons montré que MxiC forme un complexe avec la sous-unité de la tige interne, MxiI, afin de bloquer l’entrée du canal de sécrétion et que cette interaction est conservée chez Yersinia et Salmonella. Nous démontrons que, suite au contact cellulaire, la dissociation de ce complexe facilite le switch de sécrétion des translocateurs aux effecteurs. Nos résultats révèlent également que MxiC est capable de s’associer au chaperon IpgC afin de réguler la sécrétion des translocateurs. De plus, nous avons identifié les domaines de MxiC engagés dans la régulation du SST3 et rapporté un nouveau rôle de MxiC dans l’échappement aux macrophage impliquant une possible inhibition de la voie apoptotique classique afin de promouvoir une pyroptose. Chez Shigella, IpaD gouverne la composition du complexe d’extrémité et est impliqué dans la régulation de la sécrétion. Nous avons développé une étude phénotypique de ses régions coiled-coil et centrale et montré que la composition du complexe d’extrémité permet de définir à la fois l’état d’inductibilité de l’AST3 et la sécrétion des effecteurs tardifs. Par ailleurs, notre étude fonctionnelle des domaines de MxiC et IpaD suggère que les capacités de Shigella à échapper au macrophage et à insérer un pore de translocation ne sont pas strictement couplées. <p>La dernière partie de ce travail s’est focalisée sur la caractérisation de la protéine Spa13 de Shigella. Nous avons découvert que le défaut de sécrétion du mutant spa13 est dû à l’instabilité de la sous-unité MxiH de l’aiguille et que Spa13 n’est pas sécrété par le SST3. Nos résultats indiquent également un rôle de Spa13 dans l’escorte de chaperons et l’activation de l’appareil d’exportation afin de promouvoir la sécrétion des substrats./Shigella is the causative agent of shigellosis, also known as bacillary dysentery, an invasive disease of the human colonic epithelium. During infection, Shigella uses a type III secretion system (T3SS) to penetrate enterocytes and to disseminate into the colonic epithelium, leading to destruction of the mucosal lining and shigellosis symptoms. Most of the virulence factors of Shigella are encoded by a large plasmid harboring a 30-kb region that is sufficient to promote bacterial entry into host cells. This entry region is organized in two loci, one corresponding to the the ipa-ipg genes encoding the secreted proteins and their cognate chaperones while the other encodes Mxi-Spa proteins that form the type III secretion apparatus (T3SA), consisting of a cytoplasmic bulb, a basal body spanning the bacterial envelope and a hollow needle. The T3SS allows the ordered and hierarchical secretion of effectors by inserting a translocation pore in the host cell membrane through which effector proteins are injected into the cytosol. Before host cell contact, the T3SA is inactive and plugged by the tip complex proteins IpaB and IpaD. <p>In Shigella, the gatekeeper MxiC is known to sequester effectors within the cytoplasm prior to receiving the activation signal from the needle but the molecules involved in linking the needle and MxiC are unknown. We demonstrated that MxiC and the predicted inner-rod component MxiI form a complex plugging the T3SA entry gate and showed that this interaction is conserved in Yersinia and Salmonella. Dissociation of this complex seems to facilitate the switch in secretion from translocators to effectors upon host cell contact. Our results also revealed that MxiC binds to the chaperone IpgC to regulate translocators secretion. Moreover, we identified the domains of MxiC involved in the T3S regulation and reported a new role in macrophage escape by potential inhibition of the classical apoptosis to promote pro-inflammatory pyroptosis. <p>In Shigella, IpaD rules the composition of the tip complex and is involved in secretion control and translocon insertion. We therefore undertook a phenotypic analysis of its coiled-coil and central regions and showed that the composition of the tip complex defines both the T3SA inducibility state and late effectors secretion. Besides, our functional study on MxiC and IpaD domains suggests that Shigella abilities to escape macrophage vacuole and to insert the translocation pore are uncoupled.<p>The last part of this work is related to the characterization of the Spa13 protein of Shigella. We found that the secretion defect of the spa13 mutant is due to the instability of the needle component MxiH and that Spa13 is not a secreted substrat. Our results also support a dual role of Spa13 as a chaperone escort and as an export gate-activator switch to promote substrates secretion. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
44 |
Remodelling of the F-actin Cytoskeleton of Polarized Epithelial Cells by the Type 3 Secretion System-1 Effector Proteins of Salmonella enterica sv. TyphimuriumFelipe-López, Alfonso 30 November 2015 (has links)
Darmepithelzellen entwickeln eine spezielle apikale Oberfläche zur Aufnahme von Nährstoffen aus dem Darminhalt. Diese Oberfläche besteht aus F-Aktin Protrusionen und werden als Mikrovilli (MV) bezeichnet. MV regulieren die kommensalen Bakterien und schützen die inneren Gewebe gegen den Angriff pathogener Mikroorganismen. Dennoch kann das Enteropathogen Salmonella enterica (Salmonella) die MV auslöschen und zerstört durch sein Typ-3-Sekretionssystem und dessen sekretierte Virulenzsproteine die Epithelschicht. Diese Virulenzproteine werden in das Zytoplasma der Wirtzellen injiziert und führen während des Eindringens von Salmonella zur F-Aktin Umlagerung. Durch Untersuchungen des Einflusses einiger T3SS-1 Effektorproteine auf die Zerstörung der MV konnte nachgewiesen werden, dass allein die Translokation von SopE die MV-Auslöschung verursachte und ausreichend für die Wiederherstellung der Invasion war. Echtzeitlebend-zellmikroskopie zeigte, dass MV ausgelöscht werden während Membranausstülpungen (Ruffles) gebildet werden. Diese Ruffle-Bildung vereinfachte ein paralleles Eindringen nicht-invadierender Stämme von Salmonella. Es konnte beobachtet werden, dass die Ausschaltung von Villin und Myosin 1a durch shRNA in C2BBe1 Zellen die Invasionsrate von Salmonella ermäßigte. Darüber hinaus wurde Ezrin zu den intrazellulären Bakterien aber nicht zur apikalen Seite rekrutiert. Außerdem verhinderte die durch das SopE verursachte Umlagerung des F-Aktins, welche die MV-Auflösung zur Folge hatte, die Makropinozytose der infizierten Zellen. Es lässt sich daraus schließen, dass die Zerstörung der MV für eine effiziente Invasion von Salmonella nötig ist. Die F-Aktin Umlagerung begünstigt zudem das Eindringen von nicht-invadierenden Bakterien. Des Weiteren benötigt Salmonella MV-Proteine zur F-Aktin Polymerisierung und Invasion in polarisierten Epithelzellen, was die Makropinozytose der Zellen beeinträchtigt. Möglicherweise tragen diese Phänotypen zur Infektion in vivo bei und verursachen das klinische Bild des Durchfalls.
|
Page generated in 0.0441 seconds