• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pilotierung und Evaluierung eines Workshops zur Steigerung der Lehrkompetenz im Einsatz von interaktiven Tafeln für Lehrkräfte an Hochschulen und zukünftige Lehrkräfte an allgemeinbildenden Schulen: Ein Teilprojekt im Verbundvorhaben Bildungsportal Sachsen

Heuschmidt, Jakob, Schirmacher, Jana 06 December 2018 (has links)
Im Bericht wird ein Workshop zur Nutzung von interaktiven Smarboards beschrieben und analysiert. Dabei ging es im Projekt vordergründig um die Herausbildung von Multiplikatorinnen und Multiplikatoren im Umgang mit Smartboards. Beiläufig wurde bestätigt, dass eine flächendeckende Ausstattung von Schulen und Universitäten mit Smartboards kaum nennenswerte Vorteile gegenüber von Varianten mit Projektoren und Tablets darstellt.:Inhaltsverzeichnis 1 Beschreibung des Projekts 2 Pilotworkshop 2.1 Durchführung 2.2 Evaluation und Planungsanpassung des folgenden Workshops 3 weitere Workshops 3.1 Durchführung 3.2 Evaluation 4 Fazit 4.1 Zusammenfassung der Abschlussdiskussionen – Chancen und Grenzen von interaktiven Tafeln 4.2 Wie sieht die Zukunft von interaktiven Tafeln aus?
2

The Finsters: From the Beginning of the 14th Century to the Present: An English Translation

Finster, C. H. Arthur 14 February 2024 (has links)
This history of the Finster family beginning in the 14th century is a translation of an original 1921 work in German by Carl Hermann Arthur Finster. C.H. Arthur Finster was inspired to write this history following the success of Max Finster's beautiful Finsters in Görlitz family tree, reproduced at the rear of this publication. The significance of those 20th-century publications to the Finsters family has prompted this reproduction, which will help to preserve the family history and provide greater access to the history, particularly for descendants, but more generally for the German diaspora throughout the world. This English edition includes a new Australian section by Lorraine Dooley, which adds the Australian story of the Finster family, from 1849 when Arthur Guido Finster emigrated from Görlitz, Germany, to Melboure, Australia.
3

A comparative study between Pt and Rh for the electro-oxidation of aqueous SO₂ and other model electrochemical reactions / Marcelle Potgieter

Potgieter, Marcelle January 2014 (has links)
The ever increasing demand for a clean and renewable energy source has stimulated research for alternatives for the use of fossil fuels, which contribute significantly to global warming. The SO2 oxidation reaction was studied for production of hydrogen as a clean and renewable energy carrier. This reaction occurs at a lower standard electrode potential (0.158 V vs. SHE) than normal water electrolysis (1.23 V vs. SHE). This is a theoretical indication that the SO2 oxidation reaction has possible potential when compared to normal water electrolysis, since hydrogen production may occur at lower potentials and therefore lower cost. Rh was compared with Pt for the SO2 oxidation reaction since little research has been done on this catalyst and many studies exist in which Pt was used as catalyst. The oxygen reduction reaction and ethanol oxidation reaction were also included in this study to create a foundation for the catalysts studied, since the SO2 oxidation reaction is complicated by different adsorbed species that can form according to various mechanisms. The electrochemical techniques employed in this study to characterize the catalysts included cyclic voltammetry from which onset potentials and limiting current densities were determined, as well as from which some qualitative analysis was done. Linear polarization experiments were used during rotating disk electrode studies from which Levich and Koutecky-Levich analyses were done and the number of electrons transferred calculated and compared between the two catalysts. From the Koutecky-Levich analysis the kinetic current density was also obtained for use in Tafel analysis for further comparison between catalysts. It was found that Rh showed good behaviour for the oxygen reduction reaction when compared to Pt with similar onset potentials and limiting current densities. From Levich analysis it was concluded that both catalysts achieved diffusion limitation at high overpotentials. However, from the calculated number of electrons transferred it was evident that a difference in mechanism existed between catalysts and that the mechanism for both changed in the potential range studied, which is confirmed by the Tafel slopes. For the ethanol oxidation reaction it was shown that Rh exhibited very low catalytic activity in comparison with Pt. However, it was concluded from cyclic voltammetry and rotating disk electrode studies that more adsorbed species were present on the surface of Rh than on Pt. These results confirmed the possibility of using Rh as a co-catalyst together with Pt since it was shown from rotating disk electrode studies that low adsorption of ethanol and its oxidation products caused species to be transported away from the surface of the electrode during rotation. For the SO2 oxidation reaction it was found that Rh exhibited very poor catalytic activity together with being very susceptible to poisoning by adsorbed species. Pt showed very good behaviour, which corresponded well with what had been observed in literature. Levich analysis revealed that Pt did not exhibit diffusion limitation and Koutecky-Levich analysis revealed that a 2 electron reaction occurred on Pt, which corresponds with the SO2 oxidation reaction during which 2 electrons are transferred. It was, therefore, shown that Rh could exhibit good behaviour and act as a suitable catalyst in certain circumstances. However, for the SO2 oxidation reaction, which was the main focus of this study it was shown that Rh is not a suitable catalyst, either alone or as co-catalyst. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
4

A comparative study between Pt and Rh for the electro-oxidation of aqueous SO₂ and other model electrochemical reactions / Marcelle Potgieter

Potgieter, Marcelle January 2014 (has links)
The ever increasing demand for a clean and renewable energy source has stimulated research for alternatives for the use of fossil fuels, which contribute significantly to global warming. The SO2 oxidation reaction was studied for production of hydrogen as a clean and renewable energy carrier. This reaction occurs at a lower standard electrode potential (0.158 V vs. SHE) than normal water electrolysis (1.23 V vs. SHE). This is a theoretical indication that the SO2 oxidation reaction has possible potential when compared to normal water electrolysis, since hydrogen production may occur at lower potentials and therefore lower cost. Rh was compared with Pt for the SO2 oxidation reaction since little research has been done on this catalyst and many studies exist in which Pt was used as catalyst. The oxygen reduction reaction and ethanol oxidation reaction were also included in this study to create a foundation for the catalysts studied, since the SO2 oxidation reaction is complicated by different adsorbed species that can form according to various mechanisms. The electrochemical techniques employed in this study to characterize the catalysts included cyclic voltammetry from which onset potentials and limiting current densities were determined, as well as from which some qualitative analysis was done. Linear polarization experiments were used during rotating disk electrode studies from which Levich and Koutecky-Levich analyses were done and the number of electrons transferred calculated and compared between the two catalysts. From the Koutecky-Levich analysis the kinetic current density was also obtained for use in Tafel analysis for further comparison between catalysts. It was found that Rh showed good behaviour for the oxygen reduction reaction when compared to Pt with similar onset potentials and limiting current densities. From Levich analysis it was concluded that both catalysts achieved diffusion limitation at high overpotentials. However, from the calculated number of electrons transferred it was evident that a difference in mechanism existed between catalysts and that the mechanism for both changed in the potential range studied, which is confirmed by the Tafel slopes. For the ethanol oxidation reaction it was shown that Rh exhibited very low catalytic activity in comparison with Pt. However, it was concluded from cyclic voltammetry and rotating disk electrode studies that more adsorbed species were present on the surface of Rh than on Pt. These results confirmed the possibility of using Rh as a co-catalyst together with Pt since it was shown from rotating disk electrode studies that low adsorption of ethanol and its oxidation products caused species to be transported away from the surface of the electrode during rotation. For the SO2 oxidation reaction it was found that Rh exhibited very poor catalytic activity together with being very susceptible to poisoning by adsorbed species. Pt showed very good behaviour, which corresponded well with what had been observed in literature. Levich analysis revealed that Pt did not exhibit diffusion limitation and Koutecky-Levich analysis revealed that a 2 electron reaction occurred on Pt, which corresponds with the SO2 oxidation reaction during which 2 electrons are transferred. It was, therefore, shown that Rh could exhibit good behaviour and act as a suitable catalyst in certain circumstances. However, for the SO2 oxidation reaction, which was the main focus of this study it was shown that Rh is not a suitable catalyst, either alone or as co-catalyst. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
5

Analise da resistencia a corrosão do aço carbono revestido com Al55-Zn apos deformação mecanica e tratamento termico / Analysis of the corrosion resistance of the 55AI-Zn coating on carbon steel after mechanical deformation and heat treatment

Beserra, Antonio Adelmo Freire 01 December 2001 (has links)
Orientador: Celia Marina de A. Freire / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-29T00:11:40Z (GMT). No. of bitstreams: 1 Beserra_AntonioAdelmoFreire_D.pdf: 6476925 bytes, checksum: 51577bdfab4d41fd0bb2c35bf250bfc2 (MD5) Previous issue date: 2001 / Resumo: O revestimento de Al55-Zn apresenta uma resistência à corrosão atmosférica em média doze vezes superior à do revestimento galvanizado. Entretanto, após deformação mecânica, o revestimento de Al55-Zn apresenta microtrincas que comprometem a sua resistência à corrosão. Neste trabalho estudou-se a variação na resistência à corrosão do revestimento de Al55-Zn após deformação sob tração ou dobramento e a influência de tratamentos térmicos a '200 GRAUS' e a '360 GRAUS' durante 16h na resistência à corrosão do revestimento antes e depois das deformações. Para isso, um grupo de amostras do material foi deformado sob tensão de tração até 10% ou 15% de seu comprimento inicial e outro grupo foi dobrado até '90 GRAUS' ou '180 GRAUS'. A variação na resistência à corrosão do revestimento foi analisada através das técnicas de extrapolação de Tafel e de espectroscopia de impedância eletroquímica. Como resultado, observou-se que tanto a deformação axial quanto o dobramento do material reduzem a sua resistência à corrosão. Após o tratamento térmico a '360 GRAUS' as amostras deformadas até 10% ou 15% recuperaram a sua resistência à corrosão, entretanto, as amostras dobradas até '90 GRAUS' ou '180 GRAUS' apresentaram apenas uma recuperação parcial na sua resistência à corrosão após os tratamentos térmicos / Abstract: The atmospheric corrosion resistance of 55%Al-Zn alloy coating on average is twelve times that of an equal thickness of galvanized coating. However, it has been shown that microcracks were observed at all levels of strain under simple uniaxial tension. Our research has been focused on determining the degree of corrosion experienced by these coatings after deformation under simple tension or bending and how much the heat treatment at '200 DEGREES' or '360 DEGREES' for 16h can influence the corrosion resistance of the coating. The coated sheet samples were strained to 10% or 15% engineering strain while another group of samples was bent to bend angles of '90 DEGREES' or '180 DEGREES'. The corrosion resistance of the samples was evaluated trhough Tafel extrapolation and electrochemical impedance spectroscopy methods. As a result, it was observed that both the straining and the bending of the coating reduces its corrosion resistance. After the heat treatment at '360 DEGREES' the samples strained to 10% or 15% recover their corrosion resistance, but the specimens bended to '90 DEGREES' or '180 DEGREES' recuperate only partially the corrosion resistance after the heat treatments / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
6

SYNTHESIS AND CHARACTERIZATION OF POLYANILINE, SUBSTITUTED POLYNAILINES AND THEIR COMPOSITES COATS ON AL-2024

SHAH, KUNAL G. 11 October 2001 (has links)
No description available.
7

Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption

Mendiratta, Neeraj K. 05 May 2000 (has links)
Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10-4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22 – 30 0C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones. / Ph. D.
8

Characterization of Cathodic and Anodic Processes Associated with Crevice Corrosion under Thin Electrolyte Films

Agarwal, Arun Sureshchandra 03 August 2009 (has links)
No description available.
9

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
10

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0428 seconds