• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROCEDES BASSE ENERGIE POUR LA PRODUCTION D'EMULSIONS TRES CONCENTREES HUILE DANS EAU : CARACTERISATION, INTENSIFICATION ET APPLICATIONS.

Caubet, Sylvain 03 December 2010 (has links) (PDF)
Les émulsions très concentrées sont présentes dans de nombreux domaines tels que l'agroalimentaire ; la cosmétique ; la pétrochimie etc. L'enjeu de cette étude de thèse est de caractériser un nouveau type de mélangeur basse énergie appelé mélangeur à deux barreaux (MDB) permettant d'obtenir en une seule étape une émulsion très concentrée d'huile (91%) visqueuse dans de l'eau. Ce travail a permis de définir les grandes étapes et la cinétique de formation de ce type d'émulsion au sein de ce mélangeur deux barreaux en cuve (MDB-Cuv.). Il a également été montré que ce mélangeur permet de contrôler la taille des gouttes et donc les propriétés de l'émulsion formée tout en étant très compétitif d'un point de vue énergétique. Enfin, ce procédé en cuve a pu être adapté en continu (MDB-Cont.) tout en conservant ses principales caractéristiques : production contrôlée d'émulsion uni-modale à faible coût énergétique et sans échauffement des fluides. Mots clefs : Emulsions concentrées, Emulsification basse énergie, Procédé, Rhéologie des émulsions concentrées, Contrôle et caractérisation de la taille des gouttes, Intensification.
2

Identification des descripteurs macroscopiques de la dérive pour sa modélisation / Identification of macroscop descriptors of drift for spray drift modeling

Alheidary, Majid 07 March 2016 (has links)
La dérive de pulvérisation peut être mesurée au champ ou en soufflerie. Paradoxalement, les tests au champ sont sujets à de grandes variations dues aux conditions atmosphériques mais peuvent être plus facilement réalisés contrairement aux tests en soufflerie. Ainsi les principaux modèles de dérive sont basés sur des mesures au champ alors que peu de modèles s’inspirent de mesures en soufflerie. L’objectif de ce travail a été de définir un ou des descripteurs de la dérive sur la base de l’analyse de courbes de dépôts obtenues dans la soufflerie d’IRSTEA Montpellier. Par rapport aux souffleries existantes, un protocole d’exposition de longue durée a été utilisé avec une forte densité d’échantillonnage. Un plan expérimental comprenant 99 modalités a été réalisé en tenant compte de différents types de buses (FF, AI, AI Twin jet), différente hauteurs de rampe de 40 à 80cm, différentes positions de la rampe (frontale, latérale et angles intermédiaires) et différentes vitesses de vent entre 2 et 7.5m s-1. Les résultats ont montré que le taux de dérive à 5m sous le vent (DR5) correspond au descripteur le plus robuste si l’on tient compte du large spectre de paramètres et de réglages. Des modèles de premier ordre ont été définis pour l’expression de l’effet de la vitesse du vent ainsi que de la hauteur de rampe selon le temps de vol des gouttes (ToF). Ainsi il est possible de comparer des résultats issus de conditions expérimentales différentes et de simuler l’effet de la vitesse du vent et la hauteur de la rampe pour un type donné de buse. Des mesures in situ de taille de gouttes ont confirmé la pertinence du temps de vol comme base de l’expression des résultats. / Spray drift might be measured either infield or in a wind tunnel through specific sampling strategies. Paradoxically field tests are subjected to a high variability due to the atmospheric conditions but can be more easily conducted in the absence of a wind tunnel. The result is that most of spray drift models are based on infield measurements. Conversely very few models were developed on the basis of wind tunnel measurements. The objective of this work was to define spray drift descriptors from the analysis of drift curves in IRSTEA wind tunnel. Compared to the majority of existing wind tunnels, a long duration exposure protocol was applied with a high sampling density. A large experimental plan of 99 modalities were conducted including nozzle types (FF, AI, AI Twin jet), boom heights from 40 to 80cm, boom positions (frontal, lateral, and intermediate angles) and wind velocities from 2 to 7.5ms-1. Results showed that the drift ratio at 5m (DR5) was the most robust drift indicator considering the wide range of parameters and operations conditions (wind velocity, boom height). First order models were drawn for the expression of the effect of the wind velocity and the boom height according to the droplet time of flight (ToF). As a result it was possible to compare data from different experimental conditions and to simulate the effect of the wind velocity and the boom height for a given type of nozzle. In situ droplet size measurements confirmed the relevance of the time of flight expression.
3

Rôle des diagnostics optiques en temps réel dans le contrôle d'une colonne d'extraction liquide-liquide type pulsée - comparaison expérience / modèle

Syll, Ousmane 11 December 2008 (has links) (PDF)
La conception d'une colonne d'extraction liquide-liquide repose sur le mécanisme de transfert d'énergie conduisant à une fragmentation de la phase légère en gouttelettes permettant le transfert de matière avec la phase lourde. Toutefois ce mécanisme présente de façon récurrente à chaque plateau une coalescence des gouttes suivie d'une fragmentation. Le processus étudié dans ce mémoire repose sur l'emploi d'une colonne pulsée instrumentée par des techniques optiques (analyse d'images et Anémométrie Doppler Laser) afin de disposer d'outils non intrusifs pour qualifier les processus de transfert et l'hydrodynamique de la colonne. Le modèle expérimental choisi consiste à étudier le transfert de matière de l'acide acétique de la phase dispersée (acétate d'éthyle - acide acétique) à la phase continue (eau). Le système d'analyse d'image a permis de mesurer in situ la distribution des gouttes de la phase légère selon leur taille (DSD) en fonction des paramètres physicochimiques et thermodynamiques. La tension de surface de chaque liquide vis-à-vis des plateaux perforés (PTFE) a été déterminée à partir des mesures d'angle de contact. Les transferts d'énergie et de matière caractérisés par le rapport surface/volume des gouttes sont corrélés avec les paramètres d'action afin d'interpréter le phénomène restrictif tels que le Hold-up et l'efficacité de séparation. Cependant, l'étude du travail d'adhésion entre la goutte et la surface des plateaux indique que les variations des propriétés interfaciales sont fonction de la concentration du soluté et doit être prises en compte dans la corrélation du diamètre moyen de Sauter. Nous avons utilisé des codes industriels Hysys/Aspen afin d'établir le rôle déterminant de la tension de surface sur les codes de calcul et la convergence des modèles. A partir de ces modèles nous avons déterminer l'efficacité de chaque plateau et de mettre en évidence le rôle du transfert d'énergie responsable du phénomène d'engorgement. Nous avons estimé la vitesse moyenne et le temps de séjour moyen sur chaque plateau par ADL en fonction de l'énergie transmise au plateau par pulsation mécanique et à partir de ces résultats nous avons simulé sous Comsol 3.4 l'écoulement hydrodynamique de la colonne type pulsée.
4

Contribution à la modélisation de la pulvérisation d'un liquide phytosanitaire en vue de réduire les pollutions

De Luca, Magali 06 December 2007 (has links) (PDF)
La viticulture est une activité très consommatrice de pesticides (20% de la consommation totale française). Par conséquent, il semble capital d'optimiser les procédés de pulvérisation en milieu agricole afin de réduire les quantités de produits appliquées. Les traitements sont la plupart du temps pulvérisés sous forme d'une bouillie liquide composée d'eau et de matières actives, auxquelles sont ajoutées d'autres substances comme les surfactants et les adjuvants afin de faciliter leur emploi et d'améliorer leur efficacité. Des études récentes ont souligné que les tailles et vitesses de gouttes produites en sortie de buses ont un fort impact sur l'efficacité des traitements. En effet, suivant ces caractéristiques, les gouttes sont plus ou moins soumises aux phénomènes d'évaporation, de dérive ou de ruissellement. L'objectif de la présente étude est donc de modéliser l'atomisation des jets de pesticides afin d'obtenir la dispersion liquide, et les caractéristiques du jet. Ces données pourront servir de conditions initiales aux modèles de transport et de dépôt. Pour cela, un modèle Eulérien développé dans le secteur automobile est utilisé. Il suppose l'écoulement turbulent d'un « pseudo-fluide » avec une masse volumique comprise entre celle d'un liquide et celle d'un gaz. La dispersion du liquide dans la phase gazeuse est calculée grâce à l'équation de la fraction massique liquide moyenne. La taille moyenne des fragments liquides produits est quant à elle déterminée au moyen d'une équation pour la surface moyenne de l'interface liquide-gaz par unité de volume, dans laquelle sont pris en compte les phénomènes physiques responsables de la production et destruction de surface. La modélisation de la turbulence est assurée par le modèle aux tensions de Reynolds. Les équations du modèle ont été implémentées dans le code commercial CFD, Fluent et appliquées au cas d'une buse à turbulence agricole. Des calculs numériques tridimensionnels de l'écoulement interne et externe de la buse ont été réalisés jusqu'à une distance d'environ 1cm de la sortie. Les résultats numériques délivrés par le modèle semblent montrer un bon accord avec les photographies des jets obtenues par ombroscopie. Ils indiquent la formation d'une nappe liquide creuse en sortie de buse et la présence de zones de recirculation au sein de l'écoulement, soulignant l'existence d'un coeur d'air. Pour ce qui est des tailles de gouttes, les résultats mettent en évidence la présence d'une couronne de gouttes relativement grosses et, au milieu, de gouttes plus fines, conformément aux expérimentations. Ils soulignent également le fait que la cassure du spray se produit très près de la sortie de la buse.
5

Contribution à la modélisation Eulérienne de l'atomisation pour la pulvérisation agricole

Belhadef, Abdelhak 17 December 2010 (has links) (PDF)
La pollution de l'environnement par les pesticides reste une préoccupation sociale et environnementale importante. Lors de l'application, une partie des pesticides peut contaminer l'environnement (dérive). La diminution des pollutions repose sur la maîtrise de la taille et la vitesse des gouttes en sortie de buse. L'objectif principal de cette thèse est de développer une approche Eulérienne afin d'estimer les caractéristiques initiales des gouttes produites telles que la taille et la vitesse à la sortie de buse. Le modèle Eulérien d'atomisation considère l'écoulement diphasique d'un liquide et d'un gaz comme un écoulement turbulent d'un seul fluide avec une masse volumique variable, variant entre celle du gaz et celle du liquide pulvérisé. Une équation de transport pour la fraction massique liquide moyenne permet de décrire la dispersion du liquide dans la phase gazeuse. La turbulence est modélisée par une approche aux tensions de Reynolds (RSM) en résolvant les équations de transport de chacune des six composantes du tenseur de Reynolds. Par ailleurs, une équation de transport de l'interface volumique liquide/gaz est considérée. La production de l'interface volumique qui exprime la création des gouttes est fonction, d'une part, à grande échelle, du gradient de vitesse moyenne et, d'autre part, à petite échelle, de la turbulence. La destruction de l'interface volumique qui exprime la coalescence des gouttes, quant à elle, prend en compte la tension de surface qui s'oppose à la désintégration de la surface liquide. L'évolution spatiale des rayons et des vitesses des gouttes produites en sortie de buse est décrite en couplant l'équation de la fraction massique liquide moyenne et celle de l'interface volumique à celles de la conservation de la masse, de la quantité de mouvement et de la turbulence. L'étude est faite avec le code de calculs FLUENT V.12 en utilisant les Fonctions Définies par l'Utilisateur (UDF "User Defined Function") pour adapter le code à nos conditions d'injection très particulières puisque le rapport des masses volumiques liquide et gaz est de l'ordre de 800. Les résultats obtenus par le modèle indiquent la formation d'une nappe conique creuse constituée de grosses gouttelettes et la présence d'une zone de recirculation près de l'axe du spray constituée de gouttelettes plus petites, conformément aux expérimentations. La comparaison du Diamètre Moyen de Sauter calculé par le modèle et mesuré expérimentalement par l'Anémométrie Phase Doppler montre un bon accord.
6

LES of atomization and cavitation for fuel injectors / Simulation aux grandes échelles de l'atomisation et de la cavitation dans le cadre des injections de carburant

Ahmed, Aqeel 06 September 2019 (has links)
Cette thèse présente la Simulation des Grandes Echelles (LES) de l’injection, de la pulvérisation et de la cavitation dans un injecteur pour les applications liées aux moteurs à combustion interne. Pour la modélisation de l’atomisation, on utilise le modèle ELSA (Eulerian Lagrangian Spray Atomization). Le modèle résout la fraction volumique du combustible liquide ainsi que la densité de surface d’interface liquide-gaz pour décrire le processus complet d’atomisation. Dans cette thèse, l’écoulement à l’intérieur de l’injecteur est également pris en compte pour une étude ultérieure de l’atomisation. L’étude présente l’application du modèle ELSA à un injecteur Diesel typique, à la fois dans le contexte de RANS et de LES.Le modèle est validé à l’aide de données expérimentales disponibles dans Engine Combustion Network (ECN). Le modèle ELSA, qui est normalement conçu pour les interfaces diffuses (non résolues), lorsque l’emplacement exact de l’interface liquide-gaz n’est pas pris en compte, est étendu pour fonctionner avec une formulation de type Volume of Fluid (VOF) de flux à deux phases, où l’interface est explicitement résolu. Le couplage est réalisé à l’aide de critères IRQ (Interface Resolution Quality), qui prennent en compte à la fois la courbure de l’interface et la quantité modélisée de la surface de l’interface. Le modèle ELSA est développé en premier lieu en considérant les deux phases comme incompressibles. L’extension à la phase compressible est également brièvement étudiée dans cette thèse. Il en résulte une formulation ELSA compressible qui prend en compte la densité variable de chaque phase. En collaboration avec l’Imperial College de Londres, la formulation de la fonction de densité de probabilité (PDF) avec les champs stochastiques est également explorée afin d’étudier l’atomisation. Dans les systèmes d’injection de carburant modernes, la pression locale à l’intérieur de l’injecteur tombe souvent en dessous de la pression de saturation en vapeur du carburant, ce qui entraîne une cavitation. La cavitation affecte le flux externe et la formulation du spray. Ainsi, une procédure est nécessaire pour étudier le changement de phase ainsi que la formulation du jet en utilisant une configuration numérique unique et cohérente. Une méthode qui couple le changement de phase à l’intérieur de l’injecteur à la pulvérisation externe du jet est développée dans cette thèse. Ceci est réalisé en utilisant le volume de formulation de fluide où l’interface est considérée entre le liquide et le gaz; le gaz est composé à la fois de vapeur et d’airambiant non condensable. / This thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air.

Page generated in 0.0735 seconds