• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1188
  • 272
  • 123
  • 116
  • 116
  • 88
  • 41
  • 36
  • 34
  • 26
  • 19
  • 16
  • 16
  • 13
  • 10
  • Tagged with
  • 2632
  • 330
  • 290
  • 274
  • 273
  • 230
  • 214
  • 209
  • 207
  • 187
  • 187
  • 172
  • 172
  • 171
  • 164
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Physically active academic lessons and on-task behavior in preadolescent children : effects of physical activity intensity

Grieco, Lauren Alexis 28 October 2014 (has links)
Past research has shown classroom lessons incorporating physical activity (10-15 minutes in duration) to improve on-task behavior in children (Mahar, 2006; Grieco, Bartholomew & Jowers, 2009). However, no study to date has examined the levels of physical activity required to elicit this response. As such, the present study was designed to assess the effects of physically active, academic lessons of varying intensity, set in game-type format, on academic engagement of preadolescent children in the classroom setting. Time spent on-task (measured through direct observation) served as the primary outcome variable and assessed by means of a two (time: pre-, post-lesson) x four [condition: inactive lesson (physical activity control); sedentary academic game (interest control); low-to-moderate intensity physically active academic game; moderate-to-vigorous intensity physically active academic game] repeated measures design. Participants were third, fourth and fifth grade children from two elementary schools in central Texas (7 to 11 years of age). Physical activity was measured using Actigraph GT1M accelerometers (Fort Walton Beach, FL). Demographic data were collected for each participant on gender, age, ethnicity, height and weight (BMI calculated). Results indicated that the students’ TOT decreased significantly after a traditional seated control lesson. TOT did not change following the inactive control game. Thus, the competitive, seated game was sufficient to prevent the reduction in TOT that followed the traditional, seated control. In contrast, both physically active games were sufficient to increase TOT. Both had a significant increase in TOT relative to each control condition. In addition, the effect of the MVPA game was nearly three times the effect of the LMPA game. / text
72

Improving Performance and Quality-of-Service through the Task-Parallel Model​ : Optimizations and Future Directions for OpenMP

Podobas, Artur January 2015 (has links)
With the failure of Dennard's scaling, which stated that shrinking transistors will be more power-efficient, computer hardware has today become very divergent. Initially the change only concerned the number of processor on a chip (multicores), but has today further escalated into complex heterogeneous system with non-intuitive properties -- properties that can improve performance and power consumption but also strain the programmer expected to develop on them. Answering these challenges is the OpenMP task-parallel model -- a programming model that simplifies writing parallel software. Our focus in the thesis has been to explore performance and quality-of-service directions of the OpenMP task-parallel model, particularly by taking architectural features into account. The first question tackled is: what capabilities does existing state of the art runtime-systems have and how do they perform? We empirically evaluated the performance of several modern task-parallel runtime-systems. Performance and power-consumption was measured through the use of benchmarks and we show that the two primary causes for bottlenecks in modern runtime-systems lies in either the task management overheads or how tasks are being distributed across processors. Next, we consider quality-of-service improvements in task-parallel runtime-systems. Striving to improve execution performance, current state of the art runtime-systems seldom take dynamic architectural features such as temperature into account when deciding how work should be distributed across the processors, which can lead to overheating. We developed and evaluated two strategies for thermal-awareness in task-parallel runtime-systems. The first improves performance when the computer system is constrained by temperature while the second strategy strives to reduce temperature while meeting soft real-time objectives. We end the thesis by focusing on performance. Here we introduce our original contribution called BLYSK -- a prototype OpenMP framework created exclusively for performance research. We found that overheads in current runtime-systems can be expensive, which often lead to performance degradation. We introduce a novel way of preserving task-graphs throughout application runs: task-graphs are recorded, identified and optimized the first time an OpenMP application is executed and are later re-used in following executions, removing unnecessary overheads. Our proposed solution can nearly double the performance compared with other state of the art runtime-systems. Performance can also be improved through heterogeneity. Today, manufacturers are placing processors with different capabilities on the same chip. Because they are different, their power-consuming characteristics and performance differ. Heterogeneity adds another dimension to the multiprocessing problem: how should work be distributed across the heterogeneous processors?We evaluated the performance of existing, homogeneous scheduling algorithms and found them to be an ill-match for heterogeneous systems. We proposed a novel scheduling algorithm that dynamically adjusts itself to the heterogeneous system in order to improve performance. The thesis ends with a high-level synthesis approach to improve performance in task-parallel applications. Rather than limiting ourselves to off-the-shelf processors -- which often contains a large amount of unused logic -- our approach is to automatically generate the processors ourselves. Our method allows us to generate application-specific hardware from the OpenMP task-parallel source code. Evaluated using FPGAs, the performance of our System-on-Chips outperformed other soft-cores such as the NiosII processor and were also comparable in performance with modern state of the art processors such as the Xeon PHI and the AMD Opteron. / <p>QC 20151016</p>
73

Faculty Senate Minutes October 1, 2012

University of Arizona Faculty Senate 01 October 2012 (has links)
This item contains the agenda, minutes, and attachments for the Faculty Senate meeting on this date. There may be additional materials from the meeting available at the Faculty Center.
74

The relationship between rapid auditory processing and phonological skill in reading development and dyslexia

Marshall, Catherine M. January 2000 (has links)
No description available.
75

The organisation of foraging in insect societies

Anderson, Carl January 1998 (has links)
No description available.
76

Prospective memory : processes and the influence of divided attention

McGann, Deborah January 1998 (has links)
No description available.
77

Residual somatosensory and motor functioning after hemispherectomy

Dijkerman, Hendrik Christiaan January 1996 (has links)
No description available.
78

The strategic task of the church in creating spaces for spirituality / Isak Jacobus Olivie

Olivier, Isak Jacobus January 2006 (has links)
The self-revelation of God through His manifested Presence took place in a variety of natural, cultural and historical spaces. Most importantly it was found in the liturgical communion of His people with Him. This was found in the public worship events, which in the Old Testament took place in the Tabernacle, synagogues and the Temple. This Temple of God, as a spiritual and symbolic space, had always been characterised by the indwelling Presence of God. In the New Testament the role of the Temple changed and the Church as God's community became the space where the believer experienced his/her spirituality. From Jesus Christ came forth His glorious Church that would be the dwelling-place of the Presence of God. The historical development of the Church brought about a diversity of theological and spiritual developments. These developments were always aided by the spaces that were created for spiritual experience and liturgical communion. These spaces included grand basilicas, small stone Churches and natural monastic spaces. In these spaces spirituality was nurtured and aided by liturgical activities, music, art and other aesthetic symbols. With the dawning of the 2lst century the world has changed drastically. The process of post-modernism has changed the way people live and also the way people experience their spirituality. Therefore, the Church has a task to think and plan strategically about the spaces for people to experience spirituality that she creates in this postmodern world. / Thesis (Ph.D. (Pastoral))--North-West University, Potchefstroom Campus, 2006
79

Cortical regions involved in proactive control of task-set

Stevens, Tobias January 2011 (has links)
This thesis is about what happens in the brain when people switch between tasks. Each task requires a particular assembly of cognitive processes, an orientation of attention and set of rules relating action to input — a "task-set". The research reported used a task-cueing paradigm to study preparatory control of task-set. On each trial a stimulus (a coloured shape) was preceded by a verbal task-cue specifying which task to do (judge the shape or the colour of the stimulus). Reaction time and error rate increase on trials when the task changes relative to trials on which it does not. When the cue stimulus interval (CSI) is increased, this "switch cost" is reduced, indexing a process of task-set reconfiguration in which top-down control is employed to reconfigure the task-set parameters. Effective reconfiguration may also be indicated by a reduction in the "response congruence effect" — poorer performance on stimuli mapped to different responses for the two tasks than for stimuli mapped to the same response. I present six experiments using transcranial magnetic stimulation (TMS), a technique for interfering briefly and harmlessly with neuronal activity in a small region of cortex, to address the question of which brain regions contribute to anticipatory control of task-set as indexed by these behavioural measures. To help guide the selection of candidate brain regions, I first present a review and meta-analysis of neuroimaging studies of task-switching in the literature. Many fMRI studies, comparing brain activation on task-switch and -repeat trials have been published. Some have also tried to isolate activations related specifically to pro-active control of task-set. The activations reported are quite inconsistent over studies. I used a quantitative meta-analysis technique to identify which brain regions are most consistently found by studies reporting switch minus repeat contrasts and which may be specifically important for preparation on switch trials. The experiments examined the effect of stimulating several regions during the long cue-stimulus interval of a task-cueing paradigm, relative to control conditions. A first pair of experiments suggests an important role in proactive task-set control for two regions in dorsal medial frontal cortex, the supplementary motor area (SMA) and an area known as pre-SMA, though the former region appeared to contribute to reducing the switch cost while the latter appeared to reduce the effects of response congruence. In a further three experiments, I examined the role of the right intra-parietal sulcus (rIPS); this appears to play a crucial role in preparation for a task-switch but not post-stimulus task-set reconfiguration. In a final experiment, I used TMS guided by fMRI activations in the same participants to study the effects of stimulation over the left inferior frontal junction (IFJ). The results indicate that a region just anterior to the left IFJ is specifically important for preparing for a switch trial. I discuss the roles that may be played by these three regions in task-set control.
80

Task-set control and procedural working memory

van't Wout, Felice Maria January 2012 (has links)
Flexible and goal-driven behaviour requires a process by which the appropriate task-set is selected and maintained in a privileged state of activation. This process can be conceptualised as loading a task-set into a procedural working memory (PWM) buffer. Task switching experiments, which exercise this process, reveal “switch costs”: increased reaction times and error rates when the task changes, compared to when it repeats. The process of loading a task-set into PWM may be one source of these costs. The switch cost is reduced with preparation, suggesting that at least some of the processes involved in a successful change of task can be achieved in advance of the stimulus. The aim of this thesis was to investigate the properties of PWM, and its contribution to task-set control. One account of PWM distinguishes between the level at which recently exercised (but currently irrelevant) task-sets are represented, and the level at which only the currently relevant task-set is maintained in a most active state. To distinguish between these levels of representation, and to assess the extent to which the process of getting a task-set into a most-active state (loading it into the PWM buffer) is subject to a capacity limit at each level, the experiments varied the number of tasks participants switched among (Experiments 1 and 2), and the complexity of individual task-sets (Experiments 3-6) in a task-cueing paradigm. In Experiments 1 and 2, participants switched among three or five tasks, in separate sessions. There was no effect of the number of tasks on the switch cost, or its reduction with preparation, provided that recency and frequency of task usage were matched. When recency and frequency were not matched, there appeared to be a larger switch cost with five tasks at a short preparation interval, suggesting that the time consumed by getting a task-set into a most active state is influenced by its recency and frequency of usage, not the number of alternatives per se. However, Experiment 3 showed that the time required to select an S-R mapping within a task-set does increase as a function of the number of alternatives (even when stimulus frequency and recency are matched), suggesting that representation of the most active task-set in a PWM buffer is subject to a strict capacity limit. Experiments 4-6 further investigated the capacity limit of this PWM buffer, and found that task-set preparation was more effective for task-sets that are less complex (i.e. specified by fewer S-R rules). These findings suggest that only very few S-R rules can be maintained in a most active state in the PWM buffer. Finally, Experiments 7-9 investigated whether S-R rules are represented phonologically for task-set maintenance and preparation, by manipulating the phonological properties of the stimulus terms. But task-cueing performance was not affected by the name length (Experiment 7) or phonological similarity (Experiments 8 and 9) of the stimulus terms. These results suggest that phonological representations of S-R rules do not make a functional contribution to task-set control, possibly because the rules are compiled into a non-linguistic PWM. The results of these experiments are discussed in terms of a procedural working memory which is separate from declarative working memory, and distinguishes between two levels of task-set control: the level of task-sets, which are maintained in a capacity unlimited state of representation, and the level at which the currently relevant task-set is maintained in a most-active but highly capacity limited state of representation.

Page generated in 0.0306 seconds